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Introduzione

Il concetto di bioinformatica si può descrivere come la convergenza di due
rivoluzioni tecnologiche: la crescita esplosiva delle biotecnologie, uguagliata
da quella delle tecnologie informatiche [Boguski, 1998].

Di particolare interesse è l’insieme delle informazioni che una cellula passa
alle sue progenie. Tale insieme viene chiamato genoma e spesso, ma non
sempre, coincide con l’informazione contenuta nelle molecole di DNA (acido
desossiribonucleico).

Negli ultimi decenni, sulla base di queste due rivoluzioni tecnologiche,
è stato introdotto un nuovo paradigma di rappresentazione e analisi del
genoma: l’approccio orientato al gene.

Tale approccio consiste nel confrontare tra loro sequenze di geni quantifi-
candone la reciproca ”somiglianza”. Sulla base delle relazioni di somiglianza
è possibile inferire una ”omologia”.

Le relazioni di omologia costituiscono il contenuto pangenomico, la cui
scoperta, appunto, consiste proprio nella ricerca dell’omologia genetica tra
sequenze di geni, al fine di raggrupparli in famiglie.

Le analisi del pan-genoma hanno trovato molte applicazioni negli studi
clinici. Gli studi pangenomici sono utili, ad esempio, per identificare i bersa-
gli farmacologici dei vaccini e degli antibatterici [Serruto et al., 2009] e per
studiare gli agenti patogeni nelle malattie epidemiche [Holt et al., 2008].

L’obiettivo di questa tesi è, pertanto, ricercare e implementare una nuova
metodologia scalabile per calcolare l’omologia di sequenza tra geni.

Questo elaborato deriva dalle attività di tirocinio svolte presso l’Univer-
sità di Parma insieme al tutor prof. Bonnici Vincenzo

Nel capitolo 1 sono presenti le definizioni relative alla terminologia scien-
tifica utilizzata nella tesi, nonchè concetti essenziali di biologia molecolare
ed evolutiva. Nel capitolo 2 viene esposto il background scientifico relativo
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alle analisi pangenomiche moderne. Nel capitolo 3 viene descritto lo sta-
to dell’arte, in particolare viene descritta la metodologia per la rilevazione
dell’omologia genica su cui è basata questa tesi, analizzando i punti di forza
nonchè alcune criticità. Nel capitolo 4 viene descritta una nuova metodologia
per calcolare l’omologia di sequenza tra geni. Infine, nel capitolo 5 vengono
discussi i test sperimentali effettuati e i risultati ottenuti.
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Capitolo 1

Definizioni

Definizione 1.0.1. L’ atomo è l’unità più piccola e indivisibile della materia.
È composto da un nucleo, al cui interno si trovano protoni e neutroni, e da
una nube di elettroni [Silvestroni and Pasquali, 1996].

Definizione 1.0.2. Un legame chimico è una una forza di natura elettro-
statica che tiene uniti più atomi in una specie chimica (legami forti, o pri-
mari o intramolecolari) o più molecole in una sostanza allo stato condensato
[Silvestroni and Pasquali, 1996].

Definizione 1.0.3. Un legame covalente è un legame chimico in cui due ato-
mi mettono in comune delle coppie di elettroni [Silvestroni and Pasquali, 1996].

Definizione 1.0.4. Una molecola è un’entità elettricamente neutra compo-
sta da due o più atomi uniti da un legame covalente [Silvestroni and Pasquali, 1996].

Definizione 1.0.5. La massa molecolare o peso molecolare è il rapporto tra
la massa di una data quantità di quella sostanza e il numero di moli della
stessa quantità di quella sostanza [Silvestroni and Pasquali, 1996].

Definizione 1.0.6. Una macromolecola è una molecola di dimensioni molto
grandi e di peso molecolare molto elevato [McNaught et al., 1997].

Definizione 1.0.7. Un monomero è molecola in grado di combinarsi con
due, tre o molte molecole identiche per formare composti a più elevato peso
molecolare [Silvestroni and Pasquali, 1996].

Definizione 1.0.8. Un polimero è una macromolecola costituita da una cate-
na di monomeri mediante la ripetizione dello stesso tipo di legame covalente.

Definizione 1.0.9. Un nucleotide è un simbolo appartenente all’alfabeto
{A, C, G, T}.
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CAPITOLO 1. DEFINIZIONI

Definizione 1.0.10. Un amminoacido è un simbolo appartenente all’alfa-
beto {F, L, I, M, V, S, P, T, A, Y, *, H, Q, N, K, D, E, C, W, R, G}.

Ogni amminoacido è ottenuto attraverso una traduzione di una sequenza
di 3 nucleotidi (chiamata tripletta):

Amminoacido Tripletta nucleotidi

F TTT
L TTA
I ATT
M ATG
V GTT
S TCT
P CCT
T ACT
A GCT
Y TAT
* TAA
H CAT
Q CAA
N AAT
K AAA
D GAT
E GAA
C TGT
W TGG
R CGT
G GGG

Tabella 1.1: Esempio di tabella relativa alla traduzione di nucleotidi in
amminoacidi per il dominio dei procarioti

Definizione 1.0.11. Un gene o sequenza biologica è una stringa s sull’al-
fabeto di amminoacidi Γ, s = a1a2 . . . ah, con ai ∈ Γ tale che 1 ≤ i ≤
h.

Definizione 1.0.12. L’insieme dei k-meri di una stringa s è composto da
tutte le sottostringhe possibili di s di lunghezza k. Una sequenza s, che
ha lunghezza |s|, contiene |s| − k + 1 k-meri diversi. Un k-mero w si può
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CAPITOLO 1. DEFINIZIONI

presentare diverse volte in s. Il numero di volte in cui w si presenta in s si
chiama molteplicità di w in s e si denota con cs(w).

Definizione 1.0.13. Il k-dizionario della stringa s è un insieme composto
da tutti i k-meri distinti ottenuti a partire da s :

Dk(s) = s[i..i+ k] : 1 ≤ i ≤ |s| − k,

dove s[i..i+ k] è la sottostringa di s che inizia alla posizione i e termina
dopo k caratteri.

Definizione 1.0.14. L’indice di Jaccard, oppure indice di similarità di Jac-
card, è un indice statistico che permette di misurare quanto sono simili due
insieme campionari ed è dato dal rapporto tra la dimensione dell’intersezione
e la dimensione dell’unione degli indici campionari.

Definizione 1.0.15. L’indice di Jaccard generalizzato, oppure indice di simi-
larità di Jaccard generalizzata, è una generalizzazione dell’indice di Jaccard.
Essa permette di calcolare l’indice di Jaccard tra due variabili piuttosto che
tra due insiemi.

Definizione 1.0.16. Data una popolazione di n individui, un genoma è l’in-
sieme di geni dell’i-esimo individuo e si denota con:

Gi = {s1, s2, . . . , sm}

Definizione 1.0.17. La lunghezza genetica di Gi è data dalla somma delle
lunghezze di tutti i geni del genoma e si denota con ⟨Gi⟩.

Definizione 1.0.18. Un grafo G è una coppia (V,E) dove doveV(G) è l’in-
sieme dei vertici (o nodi) ed E(G) è l’insieme degli archi (che può anche
essere vuoto).

Definizione 1.0.19. In un grafo G una relazione di adiacenza è un collega-
mento fra due nodi.

Definizione 1.0.20. Un grafo G si dice indiretto quando la relazione di
adiacenza è simmetrica. L’arco che connette il nodo u al nodo v è lo stesso
che connette il v al nodo u. Pertanto, l’ordine dei vertici nella coppia che
compone l’arco non ha importanza.

Definizione 1.0.21. Un grafo G si dice diretto (o orientato) se gli elementi
di E(G) sono coppie ordinate e, di conseguenza, gli archi sono associati ad
una direzione.
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CAPITOLO 1. DEFINIZIONI

Definizione 1.0.22. Un grafo pesato G è un grafo dove ogni elemento
dell’insieme E(G) ha associato un valore numerico.

Definizione 1.0.23. In un grafo G, si definisce percorso di lunghezza k in G
una sequenza di vertici collegata da una sequenza di archi.

Definizione 1.0.24. In un grafo G, un cammino che connette il nodo u al
nodo v è un percorso con i lati a due a due distinti tra loro.

Definizione 1.0.25. In un grafo G, si definisce cammino minimo che con-
nette il nodo u al nodo v, il cammino di lunghezza minima che connette il
nodo u al nodo v. Nei grafi non pesati si conta il numero di archi attraver-
sati durante il percorso, mentre nei grafi pesati si sommano i pesi degli archi
attraversati.

Definizione 1.0.26. Un sottografo di un grafo G è un grafo G’(V’,E’)
composto da un sottinsieme dei nodi e degli archi di G.

Definizione 1.0.27. Una componente connessa di un grafo G è un sottografo
di G avente tutti nodi connessi tra loro e che non può essere esteso, in quanto
non esistono ulteriori nodi in G che siano connessi ai nodi di G’.

Definizione 1.0.28. Nella teoria dei grafi, gli indicatori di centralità asse-
gnano un valore numerico ai nodi all’interno di un grafo corrispondente alla
loro posizione nella rete.

Definizione 1.0.29. Nella teoria dei grafi, la betweenness centrality è una
misura della centralità in un grafo basato su cammini minimi.

Definizione 1.0.30. Nella teoria dei grafi, la betweenness centrality di un
nodo u è il numero di cammini minimi che attraversano il nodo u.

Definizione 1.0.31. Nella teoria dei grafi, la betweenness centrality di un
arco y è il numero di cammini minimi tra coppie di vertici che passano da
tale arco.

Definizione 1.0.32. Un processo racchiude una sequenza di attività ed è
mappato in memoria RAM e controllato dal processore attraverso il sistema
operativo.

Definizione 1.0.33. Un thread è l’unità di elaborazione più piccola all’inter-
no di un sistema operativo. Esso può esistere solo all’interno di un processo
infatti, quando un processo termina, terminano anche i thread.
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CAPITOLO 1. DEFINIZIONI

Definizione 1.0.34. In informatica, con il termine High-performance com-
puting o HPC si identifica un campo multidisciplinare che include l’ammini-
strazione dei sistemi (comprese le conoscenze di rete e sicurezza), l’elettroni-
ca digitale, l’architettura dei computer, i linguaggi di programmazione e la
programmazione parallela [Brazell and Bettersworth, 2008].

Definizione 1.0.35. Nell’ambito dell’High performace computing, le archi-
tetture parallele sono sistemi in grado di eseguire più istruzioni diverse su
più dati in parallelo. Tali architetture vengono classificate attraverso la
tassonomia di Flynn.

Definizione 1.0.36. La tassonomia di Flynn suddivide le architetture dei
calcolatori in quattro categorie, a seconda di due dimensioni indipendenti
quali il flusso di istruzioni e il flusso di dati, che possono essere singole o
multiple.

Definizione 1.0.37. MIMD (Multiple Instruction stream Multiple Data stream)
è una delle quattro categorie delle architetture degli elaboratori appartenen-
te alla tassonomia di Flynn. È un tipo di architettura parallela in cui ogni
unità di calcolo può eseguire un differente flusso di istruzioni e, ogni flusso
di istruzioni lavora su un differente flusso di dati.

Definizione 1.0.38. Nell’ambito delle architetture parallele è possibile di-
stinguere architetture a memoria distribuita, nelle quali le unità di elabora-
zione accedono esclusivamente ad una memoria locale che non fa parte dello
spazio di indirizzamento delle altre unità di calcolo, e architetture a memoria
condivisa, nelle quali le unità di elaborazione accedono alla memoria come
spazio di indirizzamento globale condiviso tra tutte le unità di elaborazione.

Definizione 1.0.39. La programmazione parallela è la tecnica di program-
mazione necessaria per la scomposizione del carico computazionale in task da
distribuire ed eseguire sui diversi livelli di parallelismo dei sistemi HPC.

Definizione 1.0.40. Nell’ambito della programmazione parallela, la decom-
posizione a livello di dominio è una tipologia di scomposizione del carico
computazionale che consiste nella suddivisione di dati, organizzati in strut-
ture regolari, in strutture più piccole di dimensione uguale e assegnati a
diverse unità computazionali.
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Capitolo 2

Background

Un organismo vivente è un’entità soggetta alle leggi naturali, le stesse che
controllano il resto del mondo fisico, ma tutti gli organismi viventi, comprese
le loro parti, vengono controllati anche da una seconda fonte di causalità: i
programmi genetici. L’assenza o la presenza di programmi genetici indica il
confine netto tra l’inanimato e il mondo vivente [Ereshefsky, 1990]

È questa la definizione di organismo vivente che dà il biologo Ernst Walter
Mayr nella sua pubblicazione scientifica, Toward a new philosophy of biology
: observations of an evolutionist. Secondo Mayr, appunto, la differenza tra
il mondo inanimato e gli esseri viventi è data proprio dall’esistenza dei pro-
grammi genetici. Infatti, tutti gli organismi viventi possiedono al loro interno
le informazioni che definiscono la loro struttura e funzione.

Nella maggior parte di essi, l’informazione è memorizzata nel DNA, il
quale contiene tutte le informazioni genetiche necessarie per la produzione di
molecole essenziali per lo sviluppo degli esseri viventi.

In chimica, il DNA è un polimero a doppia catena i cui monomeri sono
chiamati nucleotidi. Esistono 4 diversi nucleotidi, rappresentati con 4 lettere:
A, C, G, T che derivano dalle iniziali delle basi azotate che li costituiscono
(adenina, citosina, guanina, timina).

Il DNA risiede nel nucleo cellulare, il quale si occupa di conservare le
informazioni genetiche. Esso è un filamento che può essere molto lungo,
infatti, per essere contenuto nel nucleo, deve essere spiralizzato in diversi
livelli e il grado di spiralizzazione massimo si chiama cromosoma.

Il DNA fu isolato per la prima volta nel 1869 dal biochimico Friedrich
Miescher e, all’incirca negli stessi anni, il biologo Gregor Johann Mendel
elaborò la teoria sull’eredità biologica, basata sui suoi famosi esperimenti
tra piante di pisello odoroso. Mendel condusse gli esperimenti su questo
tipo di pianta perché si riproduce per autoimpollinazione e scopr̀ı i caratteri
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CAPITOLO 2. BACKGROUND

dominanti, che rimanevano inalterati nelle nuove generazioni, e i caratteri
recessivi che si ripresentavano solo in alcune generazioni.

Gregor Johann Mendel è considerato, quindi, il padre della genetica, una
branca della biologia molecolare che studia i geni, cioè determinati caratteri
di un individuo che vengono trasmessi alle generazioni successive. Un genoma
è, quindi, un insieme di geni di un particolare individuo.

La genetica si occupa di studiare anche l’ereditarietà genetica degli esseri
viventi, cioè la trasmissione, da una generazione alle successive, dei caratteri
contenuti nel genoma nonchè la variabilità genetica, cioè versioni diverse di
uno stesso organismo.

2.1 Variabilità genetica

Data una specie di un organismo vivente, determinati individui appartenenti
a tale specie non avranno tutti lo stesso genoma, perché ogni individuo è
frutto di una combinazione dei geni materni e paterni.

Secondo il concetto di selezione naturale, introdotto dal celebre biologo
Charles Darwin, in base alla diversità genetica di individui di una data specie,
si ha un progressivo aumento di coloro che hanno caratteristiche favorevoli
ad una particolare capacità di adattamento e sopravvivenza per l’ambiente
in cui vivono.

La diversità genetica si verifica, ad esempio, a causa delle mutazioni ge-
netiche, cioè a modifiche nel DNA di un individuo dovute ad agenti esterni
oppure a fenomeni naturali.

Le mutazioni genetiche all’interno di un gene più frequenti sono di tipo:

• Delezione: perdita di uno o più nucleotidi;

• Inserzione: aggiunta di uno o più nucleotidi;

• Sostituzione: scambio di nucleotidi;

• Duplicazione: moltiplicazione di nucleotidi.

All’interno delle cellule l’informazione genetica viene utilizzata per la
produzione di proteine attraverso un processo biochimico chiamato sintesi
proteica. In particolare, la catena di nucleotidi viene tradotta a blocchi di
triplette in determinati amminoacidi, i quali poi formeranno le proteine. Le
mutazioni, quindi, sono la causa di traduzioni differenti che, producendo una
proteina diversa, possono renderla non funzionante o dannosa.
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CAPITOLO 2. BACKGROUND

2.2 Genomica

La genomica è una branca della genetica ed è la disciplina che si occupa della
struttura, sequenza, funzione ed evoluzione del genoma, vale a dire di tutta
l’informazione genetica contenuta nel DNA presente nelle cellule di una par-
ticolare specie [Cavallaro, ].

Tale disciplina nasce nei primi anni ’80 a seguito dei primi studi sul se-
quenziamento di genomi, cioè la determinazione dell’ordine dei nucleotidi di
una molecola di DNA, e a seguito del primo sequenziamento relativo al virus
fago.

Nel 1995 ci furono i primi sequenziamenti di genomi relativi ad organismi
veri e propri, cioè dei batteri Haemophilus influenzae e Mycoplasma genita-
lium. Tuttavia, già nel 1986 lo United States Department of Energy, congiun-
tamente al National Institutes of Health, istitùı un grande progetto in questo
campo chiamato Human Genome Project, con l’obiettivo di sequenziare ed
identificare i geni che compongono il genoma umano.

Il progetto venne ufficialmente lanciato il 1 Ottobre 1990 e il 26 Giugno
2000 venne presentata una prima bozza comprendente ”solo” il 90% dell’in-
tero genoma umano, in quanto la restante parte era ancora indecifrabile per
le macchine del tempo, dato che era composta da sequenze ripetute molto
lunghe che non consentivano alle stesse di individuarne l’inizio e la fine. Il
progetto è stato completato il 20 giugno 2003 dal Genome Bioinformatics
Group.

In base ai concetti di variabilità genetica, nel 2019 il National Human
Genome Research Institute ha avviato il Human Pangenome Project per
”creare un genoma di riferimento umano più sofisticato e completo con una
rappresentazione grafica della diversità genomica globale”.

Infatti, sulla base degli studi riguardanti il sequenziamento dei genomi,
nel corso degli anni è emerso un nuovo approccio in questo ambito, il quale
permette di studiare e rappresentare la variabilità genetica di una specie, la
pangenomica.

2.3 Pangenomica

Nel 2005 il professore di microbiologia e immunologia Herve Tettelin, insieme
ai suoi collaboratori, confrontò sei genomi del batterio Streptococcus agalac-
tiae scoprendo che, nonostante ci fossero molti geni presenti in tutti i genomi,
si presentavano tantissimi geni ”unici” nei singoli genomi.
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CAPITOLO 2. BACKGROUND

Quindi è nella pubblicazione scientifica Genome analysis of multiple pa-
thogenic isolates of Streptococcus agalactiae: implications for the microbial
“pan-genome” [Tettelin et al., 2005] che compare, per la prima volta, il ter-
mine pan-genoma, coniato proprio dagli stessi autori.

Il termine pan-genoma è costituito da un prefisso ”pan” che deriva dal
greco e significa ”tutto”, seguito dalla parola genoma per indicare l’insieme
dei geni acquisiti da una specie [Tettelin et al., 2005].

Un pan-genoma è, quindi, una struttura astratta definita su un insieme
di geni che discendono tutti da un antenato comune [Tettelin et al., 2005,
Bonnici et al., 2018].

Infatti, osservando i genomi di individui di una data specie, è possibile
inviduare un insieme di geni core, formato da geni comuni a tutti gli individui,
i quali sono coinvolti in funzionalità essenziali per la vita. Un insieme di
geni accessori, formato da geni presenti nella maggior parte degli individui,
i quali rappresentano caratteristiche variabili e un insieme di geni singleton,
formato da geni che sono univoci per ogni individuo, che rappresentano alcune
funzionalità specifiche del genoma.

L’unione fra i geni core e i geni accessori di tutti gli organismi, sequen-
ziati all’interno di una determinata specie, prende il nome di pan-genoma
[Mira et al., 2010].

Nello stesso anno il ricercatore di microbiologia Duccio Medini, insieme
ai suoi collaboratori, scopr̀ı che, aumentando il numero di genomi presi in
considerazione in uno studio pangenomico, il numero di nuovi geni scoperti
diminuisce in modo asintotico [Medini et al., 2005].

Furono introdotti quindi i concetti di pan-genoma aperto e chiuso.
Un pan-genoma si dice aperto se, sulla base di un numero crescente di

genomi, il numero di nuovi geni scoperti aumenta in maniera non asintotica
rispetto al numero totale di geni considerato.

Viceversa, un pan-genoma si dice chiuso se presenta un numero maggiore
di geni core rispetto ai geni accessori e/o geni singleton. Un pan-genoma
aperto presenterà molti più geni accessori.

L’obiettivo di uno strumento pangenomico è la scoperta del contenuto
pangenomico e si basa sull’identificazione di gruppi di geni omologhi.

Due geni sono omologhi se condividono un gene ancestrale comune. I geni
omologhi possono essere distinti in due tipologie:

• Paraloghi, quando l’omologia si presenta all’interno dello stesso geno-
ma;

• Ortologhi, quando l’omologia si presenta tra genomi diversi.
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Questa differenza dipende dai diversi meccanismi coinvolti nella trasmis-
sione genica. In particolare la paralogia è legata alla duplicazione della se-
quenza all’interno dello stesso genoma, mentre l’ortologia può essere associata
a:

• Trasmissione verticale: accade tra i genomi della stessa discendenza e
coinvolge la maggior parte dei contenuti genetici;

• Trasmissione orizzontale: accade tra genomi di organismi di diverse
discendenze che coinvolgono uno o pochi geni.

L’identificazione di gruppi di geni omologhi deve tener conto della distan-
za filogenetica tra i genomi presi in considerazione, in quanto i fenomeni di
trasmissione orizzontale e verticale, appena descritti, introducono delle alte-
razioni nelle sequenze che possono determinare una diversa interpretazione
del confronto tra genomi durante l’identificazione.

In generale, i geni core, essendo essenziali per la vita della specie, sono
spesso sottoposti a una forte selezione evolutiva, quindi le loro sequenze ven-
gono quasi sempre trasmesse senza alcuna alterazione; mentre i geni acces-
sori sono più soggetti ad alterazionni e la loro somiglianza tende a diminuire
secondo la loro distanza filogenetica [Tettelin et al., 2005].

Durante le analisi è necessario, quindi, introdurre delle soglie ragionevoli
ed adattive per identificare i gruppi di geni omologhi.

Degno di nota è il distinguo tra rilevazione di omologia di sequenza e
rilevazione di omologia di funzione.

Nel primo caso, gli strumenti pangenomici consentono di determinare fa-
miglie geniche sulla base dei risultati analitici relativi alle sequenze genetiche.
Nel secondo caso, gli strumenti pangenomici determinano famiglie geniche i
cui componenti conservano la loro funzione ancestrale comune.

Tali geni sono originati da un gene ancestrale comune e, seppur diversi tra
loro, codificano la stessa proteina oppure proteine con funzioni molto simili
tra loro.

2.4 Metodi per la scoperta del contenuto pan-

genomico

Nell’ambito del machine learning, una branca dell’intelligenza artificiale, la
tecnica dell’apprendimento non supervisionato permette di riorganizzare in
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classi una serie di dati presi in input sulla base di caratteristiche comuni e
in assenza di un training set, cioè informazioni circa le classi da scoprire.

Gli algoritmi di clustering fanno parte delle tecniche dell’apprendimento
non supervisionato e si basano su misure relative ad una somiglianza tra gli
elementi.

In particolare, nella scoperta del contenuto pangenomico è presente una
”fase di clustering” nella quale l’omologia viene ricercata principalmente in
termini di somiglianza tra sequenze genetiche, al fine di raggruppare i geni
in cluster genici. Da notare che, in ambito biologico, non si usano i classici
algoritmi di clustering bens̀ı delle varianti sviluppate ad hoc per identificare
cluster genetici.

In particolare, per ogni gene bisogna trovare i geni più simili all’interno
degli altri genomi. Tale somiglianza può essere calcolata mediante approc-
ci che fanno uso di allineamento tra le sequenze o tramite approcci senza
allineamento.

2.4.1 Approcci con allineamento

Gli approcci con allineamento di sequenze si occupano di quantificare la somi-
glianza tra sequenze, allineandole in tutti i possibili allineamenti e misurando,
a parità di posizione, la percentuale di nucleotidi uguali. Tra tutti i possibili
allineamenti viene scelto quello che produce il valore di similarità più alto.

2.4.2 Approcci senza allineamento

Gli approcci senza allineamento di sequenze si basano sulla quantificazione
della composizione genomica di k-meri, che consiste nel ricercare ed enume-
rare, per ogni sequenza, tutte le possibili sottostringhe lunghe k. Tra due
sequenze, più è alto il numero di k-meri in comune e più sono simili tra di loro.

Una volta scelto un metodo di somiglianza, l’eventuale omologia può es-
sere inferita in diversi modi. È possibile, ad esempio, interrogare database di
sequenze genetiche al fine di trovare sequenze simili a quelle di input, oppure
è possibile lavorare con coppie di genomi al fine di trovare, per ogni gene di
un genoma, il gene più simile nell’altro genoma [Bonnici et al., 2018].

Tale ricerca può essere unidirezionale o anche bidirezionale (condizione
più forte) ed avviene sempre rispettando una soglia minima di accettazione
della similarità, determinata con diverse strategie a seconda dello strumento
considerato.
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2.4.3 Community detection

Ottenuti gruppi omogenei di dati in cluster (famiglie di geni), è possibile
assimilarli ad una community structure [Leskovec et al., 2009] in quanto i
geni rappresentano gli invidui (nodi) e i vari cluster rappresentano gli archi
che collegano più individui accumunati da caratteristiche simili (omologia di
sequenza).

Nell’ambito delle reti sociali è possibile applicare gli algoritmi di com-
munity detection, che similmente agli algoritmi di clustering, permettono di
partizionare grandi insiemi di nodi di un grafo in gruppi omogenei.

Alcune metodologie, infatti, per perfezionare le relazioni di omologia,
utilizzano algoritmi di community detection sui risultati ottenuti dalla fase
di clustering.

Nella scoperta del contenuto pangenomico, gli algoritmi di community
detection, consentono di analizzare e valutare come gruppi di geni vengono
raggruppati, inoltre consentono di determinare se gruppi di geni tendono a
rafforzarsi o a rompersi [Bonnici et al., 2018].

La figura 2.1 rappresenta un esempio di un’architettura di un workflow
pangenomico.
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Figura 2.1: Architettura di un workflow pangenomico, PanDelos: a
dictionary-based method for pan-genome content discovery, 2018
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Capitolo 3

Stato dell’arte

3.1 PanDelos

PanDelos è una metodologia per la scoperta del contenuto pangenomico
in organismi filogeneticamente distanti senza l’ausilio di parametri forniti
dall’esterno, in quanto vengono dedotti dalle sequenze di input. Inoltre,
per determinare la somiglianza tra le sequenze, utilizza un approccio senza
allineamento che si basa sulla molteplicità di k-meri.

PanDelos, attraverso confronti tra coppie di genomi, è in grado di deter-
minare i geni ortologhi e per ogni genoma, la similarità più alta (tra tutti
i geni che lo compongono), viene utilizzata come soglia per scoprire i geni
paraloghi all’interno dello stesso genoma.

Le relazioni di omologia e i geni singleton sono memorizzati in un grafo
non orientato pesato, il quale viene processato da un algoritmo di community
detection al fine di eliminare eventuali inconsistenze nelle famiglie di geni
individuate [Bonnici et al., 2018].

3.2 Metodologia

Nell’articolo scientifico ufficiale PanDelos: a dictionary-based method for pan-
genome content discovery [Bonnici et al., 2018] sono dettagliatamente de-
scritte tutte le fasi principali di PanDelos. Di seguito un estratto suddiviso
in cinque macro-fasi:

• Costruzione dei k-dizionari;

• Selezione delle coppie di geni candidate ad essere omologhe;

• Calcolo della similarità di sequenza;
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• Estrazione delle coppie di geni, calcolo della similarità bidirezionale;

• Estrazione dei paraloghi;

• Perfezionamento delle relazioni di omologia.

Nelle prime fasi vengono confrontate coppie di geni al fine di ottenere
i migliori risultati in termini di somiglianza, mentre nelle ultime si ha un
processamento dei cluster genici prodotti al fine di recuperare le famiglie di
geni.

3.2.1 Costruzione dei k-dizionari

Nella fase iniziale PanDelos calcola il valore k al fine di comporre dizionari
di k-meri per ogni gene. Se le sequenze in input sono nucleotidi, allora
k = log4|G|, dove 4 è la cardinalità dei nucleotidi e |G| è la somma delle
lunghezze di tutti i geni.

Questo valore ha dimostrato di rivelare leggi strutturali che emergono dal-
la massima differenza entropica tra genomi reali con genomi casuali della
stessa lunghezza [Bonnici et al., 2018].

In caso di sequenze amminoacidiche, l’alfabeto da considerare è Γ, quin-
di il valore k sarà dato da: k = log|Γ|

∑︁n
i=1⟨Gi⟩. dove |Γ| è la cardinalità

dell’alfabeto.

3.2.2 Selezione delle coppie di geni candidate ad essere
omologhe

Attraverso confronti tra coppie di genomi, coppie di geni che rispettano una
soglia percentuale minima di intersezione tra le rispettive coppie di dizionari,
diventano coppie di geni candidati ad essere omologhi.

Formalmente, dati due geni s e t, tale che s ∈ Gi e t ∈ Gj:

ˆ︂Dk(s, t) = Dk(s ∩ t) = Dk(s) ∩Dk(t) > soglia

Dk(s) ∩Dk(t) = pk(s → t) ∪ pk(t → s)

pk(s → t) =
∑︁

w∈Dk(s,∩t) cs(w)

|s|−k+1

pk(t → s) =
∑︁

w∈Dk(t,∩s) ct(w)

|t|−k+1
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In particolare 2 geni sono omologhi se entrambe le percentuali pk(s → t) e
pk(t → s) sono maggiori di una determinata soglia. Il valore di quest’ultima
è quantificato, non empiricamente, in 2/k.

Una riduzione del dominio di questo tipo consente di ottenere solo coppie
di geni candidate ad essere omologhi con un punteggio di similarità non
troppo basso. Per le motivazioni sulla scelta di tale soglia si faccia riferimento
all’articolo scientifico ufficiale.

3.2.3 Calcolo della similarità di sequenza

Ottenute tutte le coppie di geni candidati ad essere omologhi, attraverso dei
confronti tra coppie di genomi, PanDelos calcola il valore di similarità tra
tali coppie che appartengono alle coppie di genomi considerate.

Tale valore è determinato attraverso il calcolo della similarità di Jac-
card generalizzata, una generalizzazione dell’indice di similarità di Jaccard,
il quale permette di calcolare la similarità di insiemi campionari.

Il calcolo di questo indice è basato su operazioni in ambito insiemistico e,
poichè nella teoria degli insiemi non sono ammessi duplicati di un dato ele-
mento, si rende necessario l’utilizzo della generalizzazione dell’indice di simi-
larità di Jaccard, la quale si basa su operazioni in ambito multi-insiemistico.
In particolare, l’indice di similarità di Jaccard generalizzata ammette nel cal-
colo il valore minimo e il valore massimo della molteplicità di ogni k-mero,
una duplicazione dello stesso tipo di elemento.

A tal proposito, l’indice è calcolato come il rapporto tra la sommatoria
della minima molteplicità per un dato k-mero in s ∈ Gi e t ∈ Gj e la som-
matoria della massima molteplicità per un dato k-mero in s ∈ Gi e t ∈ Gj:

Jk(s, t) =

∑︁
w∈Dk(s∪t) min(cs(w), ct(w))∑︁
w∈Dk(s∪t) max(cs(w), ct(w))

dove cs(w) e ct(w) sono, rispettivamente, le molteplicità del k-mero w in
s e t secondo la definizione data al capitolo 1

3.2.4 Estrazione delle coppie di geni, calcolo della si-
milarità bidirezionale

Dopo aver calcolato tutti i valori di similarità nell’insieme composto dalle
coppie di geni condiderate, all’interno dello stesso contesto, PanDelos deter-
mina il sottoinsieme dei geni ortologhi attraverso l’individuazione dei geni
Best Hits (di seguito BH) e il sottoinsieme dei geni Bidirectional Best Hits
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(di seguito BBH).

Dato un gene s ∈ Gi, l’insieme dei geni BH di s all’interno del genoma
Gi è composto da tutti i geni in Gj che hanno la stessa massima similarità
di Jaccard generalizzata con s:

BH(s,Gj) = {t ∈ Gj : Jk(s, t) = max
v∈Gj

Jk(s, v)}.

Dato un gene s ∈ Gi, l’insieme dei geni BBH di s all’interno del genoma
Gi è composto da tutti i geni in Gi che hanno la stessa massima similarità
di jaccard generalizzata con s e che contengono, nei loro rispettivi insiemi di
geni best hits, il gene s:

BBH(s,Gj) = {t ∈ Gj : t ∈ BH(s,Gj) ∧ s ∈ BH(t, Gi)}

Due geni sono ortologhi se sono bidirectional best hits tra di loro.

3.2.5 Estrazione dei paraloghi

Per ogni genoma viene preso in considerazione il valore di similarità minimo
tra i geni appartenenti ad esso e che sono stati individuati come BBH; quindi
si utilizza come valore minimo per il calcolo della similarità tra coppie di geni
all’interno dello stesso genoma (paralogia).

Le coppie di geni che rispettano questa soglia formano l’insieme dei geni
paraloghi, dato che la loro somiglianza è forte almeno quanto la somiglianza
minima tra coppie di ortologhi in cui un gene appartiene al genoma che si
sta analizzando [Bonnici et al., 2018].

Le relazioni di omologia (geni ortologhi e paraloghi) sono memorizzate in
un grafo non diretto pesato in cui i nodi sono riferimenti univoci dei geni,
gli archi sono le relazioni di omologia che coinvolgono due geni e il peso è il
valore di similarità di Jaccard generalizzata calcolato.

3.2.6 Perfezionamento delle relazioni di omologia

All’interno del grafo sono presenti diversi cluster che rappresentano potenziali
famiglie di geni.

Ogni cluster è una componente connessa formata da numerosi archi tra i
nodi, in quanto i geni sono molto simili tra di loro.
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In questo caso, una componente connessa è inconsistente se nelle rela-
zioni di omologia che essa costituisce, compaiono due geni appartenenti allo
stesso genoma, i quali all’interno della stessa non sono presenti anche come
paraloghi (quindi non sono collegati da un arco) [Bonnici et al., 2018].

Come spiegato nella fase precedente, essendo che le soglie di individua-
zione dei geni paraloghi sono molto basse, c’è una probabilità molto alta che
tali geni non siano paraloghi e ciò significa che la componente connessa rap-
presenta un’unica famiglia di geni ma che in realtà, essendo inconsistente,
racchiude due famiglie di geni separate.

Visivamente essa presenterà due zone con tanti archi e una zona in cui
ci sono pochi archi tra i nodi e per avere esclusivamente componenti con-
nesse consistenti, PanDelos impiega un algoritmo di community detection
che elimina progressivamente gli archi, generando componenti connesse più
piccole. In particolare, l’algoritmo utilizzato da PanDelos è l’algoritmo di
Girwan-Newman.

L’algoritmo di Girwan-Newman è un algoritmo iterativo che si occupa di
calcolare la betweenness centrality degli archi e di eliminare progressivamente
quelli con il valore più alto.

PanDelos dopo aver identificato una componente connessa inconsisten-
te utilizza l’algoritmo di Girwan-Newman per ridurla e ad ogni iterazione
effettua un nuovo controllo di consistenza.

3.3 Test sperimentali e risultati

Negli articoli scientifici relativi a PanDelos:

• PanDelos: a dictionary-based method for pan-genome content discove-
ry, 2018

• Challenges in gene-oriented approaches for pangenome content disco-
very, 2020

sono riportati tutti i dettagli sui test sperimentali condotti al fine di di-
mostrare la validità dei risultati prodotti.

PanDelos è stato testato con genomi reali e genomi sintetici, cioè genomi
generati da un software che, partendo da un genoma root simula la sua
evoluzione in n genomi, introducendo opzionalmente inserzioni, delezioni e
duplicazioni nelle sequenze.

L’obiettivo dei test condotti è di misurare la correttezza di uno strumento
pangenomico al variare della distanza filogenetica.
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PanDelos è stato inizialmente testato con quattro specie di batteri, i cui
genomi reali sono caratterizzati da una diversa distanza filogenetica:

• Salmonella enterica: 7 genomi;

• Xanthomonas campestris : 14 genomi;

• Escherichia coli : 10 genomi;

• Mycoplasma genitalium: 64 genomi.

Da notare che i batteri Salmonella enterica ed Escherichia coli sono noti
per avere molti geni core, mentre il batterio Mycoplasma genitalium è noto
per avere tanti geni singleton [Bonnici et al., 2018].

I risultati sulle famiglie di geni individuate rispettano le caratteristiche
delle specie batteriche. In particolare le quantità di geni core, individuate
nelle specie Salmonella enterica e Escherichia coli, è alto e dello stesso ordine
di grandezza rispetto ad altri software noti. Analogamente, il numero di geni
core per la specie Mycoplasma genitalium è basso.

Dal momento che, con i genomi reali non si conosce l’esatta distanza filo-
genetica, sono stati generati dei dataset sintetici conALF [Dalquen et al., 2012],
lo strumento più completo e affidabile per la creazione di pseudo genomi batte-
rici [Bonnici et al., 2020], partendo dal genoma Mycoplasma genitalium G37
come punto di origine per l’evoluzione.

Al momento della generazione dei genomi sintetici è possibile scegliere l’e-
satta distanza filogenetica, potendo comprendere dai risultati dello strumento
pangenomico quanto siano corrette le quantità di famiglie di geni individuate.

Anche in questo tipo di test, PanDelos ha prodotto risultati eccellenti.
In generale, come descritto nel suo articolo scientifico ufficiale, i risultati

e le performance di PanDelos sono state comparate con altri due software
per la scoperta del contenuto pangenomico: Roary [Page et al., 2015] e ED-
GAR [Blom et al., 2016], ed è stato dimostrato che i risultati prodotti da
PanDelos sono coerenti con gli altri software ed ottenuti in minor tempo.
Inoltre, a differenza degli altri due software, avendo genomi con distanze fi-
logenetiche alte, esso è in grado di rilevare un numero maggiore di geni core
[Bonnici et al., 2018].

3.4 Strutture dati

PanDelos analizza coppie di genomi mediante analisi sulle molteplicità dei
k-meri nelle sequenze appartenenti ad essi.
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Per analizzare tali molteplicità è necessario, innanzitutto, determinare in
quali geni compare un dato k-mero.

È un classico problema di ricerca afferente alla categoria dei problemi di
document listing, i quali si occupano di stabilire i documenti che contengono
una determinata word.

Per risolvere questo problema viene utilizzata una struttura dati per l’in-
dicizzazione delle stringhe chiamata Suffix-Array (SA) [Manber and Myers, 1993].
In generale, un Suffix-Array consente di indicizzare tutti i suffissi di una
stringa in ordine lessicografico.

In questo modo, dato un pattern (k-mero) di cui si intende cercare la
presenza e/o la molteplicità all’interno di tale stringa, si può adottare un
approccio più efficiente della semplice ricerca posizione per posizione (della
stringa).

In particolare, questa struttura dati consente di effettuare l’operazione
attraverso una ricerca dicotomica tra i suffissi ordinati in ordine lessicografico.
Si passa, quindi, da una complessità lineare ad una complessità logaritmica.

Nel caso di PanDelos, tale struttura dati è stata utilizzata non tanto per
la ricerca di un pattern, quanto per la enumerazione di tutti e soli i k-meri
contenuti nella stringa indicizzata.

Per ogni k-mero ne viene data anche la molteplicità e l’insieme delle
posizioni in cui esso occorre.

Tale operazione è ottenuta in modo efficiente utilizzando una struttura
estesa rispetto al suffix array originale che si chiama enhanced Suffix-Array
[Brandes, 2001].

In tale struttura dati, presi due suffissi consecutivi in ordine lessicografico,
ne viene data la lunghezza del prefisso comune tra di loro più lungo.

Nel paper [Vincenzo Bonnici, 2015] tale struttura dati è stata ulterior-
mente estesa al fine di lavorare specificatamente su stringhe di tipo DNA.
In particolare, la nuova struttura dati si occupa di enumerare solo k-meri
nell’alfabeto nucleotidico A,C,G,T.

Infatti, nelle stringhe di DNA è possibile trovare delle occorrenze di ca-
ratteri N che indicano l’impossibilità di risalire allo specifico nucleotide per
quella determinata posizione.

Nella figura 3.1 sono presenti degli esempi grafici delle principali strutture
dati di PanDelos. In particolare, gli esempi grafici prendono in considerazio-
ne due genomi composti solo da due geni, per i quali vengono estratte tutte
le sottostringhe di lunghezza k = 1 e k = 2.

La figura a mostra un enhanced Suffix-Array per una delle sequenze.
Le prime due colonne contengono l’elenco dei 1-mero e 2-meri; la terza co-
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Figura 3.1: Strutture dati di PanDelos, [Bonnici et al., 2018]

lonna contiene tutti i suffissi dei 2-meri in ordine lessicografico; la quarta
colonna contiene l’indice di partenza del suffisso; la quinta colonna contiene
la lunghezza LCP, cioè la lunghezza del prefisso in comune con il suffisso
precedente; l’ultima colonna contiene l’indice in cui è presente il carattere
delimitatore N, che nel caso di una sola sequenza, corrisponde al carattere
terminatore di una stringa.

La figura b mostra un enhanced Suffix-Array, il quale permette di indi-
cizzare i 2-meri di una global sequence, data dalla concatenazione di tutte le
sequenze dei geni della coppia di genomi, separate dal carattere delimitatore
N.

Sono presenti, quindi, tutti i suffissi in ordine lessicografico, la lunghezza
LCP e l’indice n che indica la posizione in cui è presente il carattere de-
limitatore N, il quale, in questo caso, serve ad escludere dall’operazione di
enumerazione dei k-meri, coloro che lo coinvolgono in quanto non ammissibili
perché contenenti un carattere che separa due sequenze nella concatenazione.

Inoltre, è presente il SID, cioè una relazione binaria tra un suffisso e il
gene di appartenenza.
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La matrice c è un esempio di enumerazione di tutti i 2-meri in tutte le
sequenze.

Le matrici d, e, f sono matrici di ordine quadratico le cui righe e colonne
corrispondono ad identificatori univoci dei geni appartenenti ai due genomi
e sono utilizzate per calcolare e memorizzare i valori di similarità di Jaccard
generalizzata tra coppie di geni.

3.4.1 Criticità

Le strutture dati, brevemente descritte, vengono create (e poi distrutte) ad
ogni confronto tra coppie di genomi.

Dagli esperimenti effettuati durante il tirocinio è emerso che la quantità
di memoria RAM richiesta è piuttosto alta in proporzione alla dimensione
del dataset.

In particolare, un enhanced Suffix-Array necessita di 4 valori interi (4 *
4 byte) per ogni suffisso. Tuttavia, la maggior parte della quota di memoria
RAM richiesta è riferita alle tre matrici d, e, f, in quanto ognuna necessita
di uno spazio pari al prodotto della cardinalità dei genomi moltiplicato per
4 byte.

Ne consegue che, un eventuale tentativo di parallelizzazione dell’algoritmo
di PanDelos genererebbe un software ad elevatissimo uso di memoria RAM,
poichè le unità di calcolo dovrebbero costruire simultaneamente tali strutture
dati per ogni confronto tra coppie di genomi.
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Capitolo 4

Metodologia

Considerate le criticità di PanDelos analizzate nel capitolo precedente, l’o-
biettivo di questa tesi è ricercare e implementare una nuova metodologia
scalabile per calcolare l’omologia di sequenza tra geni. Tale metodologia do-
vrà sfruttuare al meglio le risorse hardware disponibili al fine di produrre i
risultati in tempi più brevi rispetto a quelli ottenuti da PanDelos a parti-
re dagli stessi dataset; mantenendo, possibilmente, la stessa consistenza dei
risultati prodotti da PanDelos, già dimostrata negli articoli scientifici citati.

4.1 Specifiche del software

Il software è stato sviluppato con il linguaggio di programmazione C++ ed
è stato rilasciato con una licenza open source e pubblicato su GitHub al
seguente link: https://github.com/vbonnici/PanDelos-plusplus corredato di
adeguata documentazione.

Il software soddisfa i seguenti requisti:

• È in grado di leggere file FASTA e costruire le strutture dati necessarie.

• È in grado di calcolare il valore k corretto per l’estrazione dei k-meri.

• È in grado di costruire i dizionari dei genomi e identificare le coppie di
geni candidate ad essere omologhe memorizzandole, successivamente,
all’interno di un file.

• Utilizza librerie esterne per il calcolo parallelo, affinché le fasi principali
della metodologia siano eseguite con il massimo grado di parallelismo
possibile.
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• Integra gli script e i software, già sviluppati per PanDelos, che effettua-
no le operazioni di community detection sul grafo contenente le coppie
di geni candidate ad essere omologhe.

4.2 Tecnologie utilizzate

4.2.1 OpenMP

OpenMP (Open Multi-Processing, https://www.openmp.org/) è un’API che
fornisce un modello di programmazione per lo sviluppo di applicazioni paral-
lele a memoria condivisa.

Il tipo di parallelismo offerto da OpenMP è realizzato esclusivamente
attraverso l’uso di thread ed è esplicito, cioè la parallelizzazione è controllata
dal programmatore e avviene utilizzando direttive all’interno del programma.

In particolare, l’API di OpenMP è stata sviluppata solo per C/C++ e
Fortran ed è formata da tre diverse componenti:

• Direttive per il compilatore;

• Libreria di runtime;

• Variabili d’ambiente.

All’interno del software sviluppato sono state utilizzate principalmente
le direttive per il compilatore, le quali permettono di effettuare le seguenti
operazioni:

• Apertura di regioni parallele;

• Distribuzione di funzioni tra thread;

• Distribuzione di iterazioni di un ciclo tra thread;

• Sincronizzazione tra thread;

4.2.2 Standard Template Library

La Standard Template Library (STL) del C++ è una raccolta di strutture
dati e algoritmi generici di utilità comune, definiti tramite il meccanismo dei
template.

Nella STL le strutture dati vengono indicate come contenitori, cioè colle-
zioni di elementi di un dato tipo T, ciascuna caratterizzata da un opportuno
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criterio di aggregazione dei dati e dalle relative operazioni di selezione dei
singoli elementi.

I contenitori utilizzati dal software sono i seguenti.

• vector<T>

– Realizza il tipo di dato astratto vettore di elementi di tipo T.
L’implementazione fornita dalla STL si basa sull’utilizzo di array
dinamici. Dunque tutti gli elementi del vettore sono memorizzati
in celle di memoria contigue per cui è garantita la possibilità di
accesso diretto tramite indice, con prestazioni del tutto analoghe
a quelle degli array forniti come primitivi dal linguaggio. Inoltre,
la memoria allocata per un oggetto vector<T> è gestita in modo
tale che possa essere espansa automaticamente se necessario.

• set<T>

– Realizza il tipo di dato astratto insieme, cioè una collezione di
elementi di tipo T, in cui non compaiono duplicati e l’ordine degli
elementi non conta.

• tuple< T1...Tn >

– Permette di costruire collezioni di elementi aventi tipo T1...Tn e
di cardinalità n scelta a compile-time.

• pair<T1, T2>

– È una specializzazione del contenitore tuple< T1...Tn > e con-
sente di costruire collezioni di elementi aventi tipo T1, T2 e di
cardinalità 2.

• map<T1, T2>

– Realizza il tipo di dato astratto tabella (o relazione binaria), trami-
te array chiave/valore ordinati rispetto ai valori del campo chiave.
La STL permette di costruire anche mappe non ordinate, caratte-
rizzate da un costo computazione costante in fase di inserimento,
rispetto ad un costo computazionale logaritmico di quelle ordinate.
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4.3 Workflow

Di seguito vengono dati i dettagli metodologici ed implementativi relativi al
workflow del software. Da notare che, in corso d’opera è stato necessario svi-
luppare due diverse metodologie per quanto riguarda la fase di ”pre-filtering”
al fine di sfruttare al meglio la capacità di calcolo. Tali metodologie sono ri-
portate come: implementazione del parallelismo nel confronto tra coppie di
genomi e implementazione del parallelismo nel confronto tra coppie di geni.

La figura 4.1 è un’illustrazione grafica che sintetizza le implementazioni
delle fasi rilevanti della metodologia ideata.
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Figura 4.1: Workflow della metodologia ideata
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4.3.1 Estrazione dei k-meri

Inizialmente, per ogni sequenza viene calcolata la molteplicità dei k-meri.
Il software implementa questa operazione con un metodo sliding window,
il quale si occupa di estrarre ed enumerare tutti i k-meri. Da notare che
in caso di sequenze amminoacidiche, l’amminoacido di lunghezza k estratto
viene convertito nella sequenza nucleotidica corrispondente.

4.3.2 Pre-filtering

Lo scopo di questa fase è confrontare coppie di genomi per determinare un
primo insieme di coppie di geni candidate ad essere ortologhi, utilizzando due
dimensioni prefissate non empiricamente quali, un valore k, per la selezione
dei k-meri, e una soglia di similarità di Jaccard generalizzata.

In questo modo il dominio di tutte le sequenze di geni in input viene
ridotto ed è possibile effettuare confronti tra coppie di genomi con soglie più
alte.

Il confronto tra coppie di genomi consiste nel confrontare, iterativamen-
te, ogni gene appartenente al primo genoma con ogni gene appartenente al
secondo genoma.

Il confronto tra coppie di geni consiste nel calcolo della similarità di Jac-
card generalizzata; cioè per ogni tipologia di k-mero si analizza quante volte
esso è contenuto nei due geni. In particolare, nel confronto tra i due valori si
incrementano ogni volta due contatori rispettivamente con il valore minimo
e il valore massimo.

La similarità di Jaccard generalizzata è data proprio dal rapporto tra
la somma dei valori minimi e la somma dei valori massimi; tale valore di
similarità deve essere maggiore di una soglia prefissata affinchè la coppia
di geni presa in considerazione sia inserita in una struttura dati elabora-
ta successivamente, la quale conterrà le coppie di geni candidate ad essere
ortologhi.

4.3.3 Calcolo della similarità di sequenza

In questa fase avviene essenzialmente lo stesso tipo di confronto, tuttavia il
software opererà solo su coppie di geni che sono abbastanza simili per un
valore k prefissato.

In questo confronto si utilizzerà un valore k determinato con gli stessi
metodi già descritti nella sezione 3.2.1 e non ci sarà una soglia minima per la
similarità di Jaccard generalizzata calcolata in quanto, come già detto, tutte
le coppie sono già state filtrate.
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4.3.4 Selezione dei Best Hits

Terminate le prime due fasi di identificazione dei geni ortologhi, è necessario
identificare le relazioni di Best Hits per ogni gene.

In particolare, all’inizio di questa fase, il software opererà su una tabella
le cui chiavi sono identificatori di geni e i valori sono tabelle contenenti gli
identificatori di altri geni con cui il gene chiave è abbastanza simile.

Quindi ogni gene (chiave) potrà essere abbastanza simile a diversi geni
(valori) appartenenti anche ad uno stesso genoma (quest’ultimo è sempre
diverso dal genoma del gene chiave in quanto si stanno identificando i geni
ortologhi). Lo scopo è di isolare, per ogni genoma, il gene più simile a quello
preso in considerazione (chiave) e cioè quello con il valore di similarità più
alto. Da notare che possono esserci best hits multipli che hanno lo stesso
(massimo) valore di similarità di Jaccard generalizzata.

4.3.5 Selezione dei Bidirectional Best Hits

Dopo aver identificato i geni Best Hits, il software si occupa di identificare i
geni con relazione Bidirectional Best Hits.

Per descrivere un esempio di relazione bidirectional best hits si consideri
l’esempio seguente.

Data una tabella BestHits < A,B < C,D >>, dove:

• A è l’identificatore del gene A;

• B è la tabella dei geni con cui il gene A è in relazione Best Hits;

• C è l’identificatore del gene C;

• D è il valore di similarità di Jaccard generalizzata tra il gene A e il
gene C;

Si definisce un Bidirectional Best Hits una coppia di geni tale per cui per
una chiave A, nella sua mappa B, esiste un gene C che, visto come una delle
chiavi della tabella BestHits, contiene nella sua mappa B una chiave uguale
ad A.

Le coppie di geni individuate alla fine di questa fase sono coppie di geni
ortologhi e saranno inserite nel grafo contenente, appunto, le coppie di geni
candidate ad essere omologhe.
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4.3.6 Identificazione dei geni paraloghi

Il processo di identificazione dei geni paraloghi si basa sugli stessi tipi di
confronti appena descritti, ma applicati a coppie di geni appartenenti allo
stesso genoma.

In base a quanto esposto nella sezione 3.2.5, per l’identificazione dei geni
paraloghi, i geni di ogni genoma analizzato dovranno rispettare una soglia
minima di similarità pari al valore più basso di similarità di Jaccard genera-
lizzata riscontrato nella fase di selezione dei bidirectional best hits, relativo a
tale genoma.

Questa fase si compone di due sottofasi già descritte. In particolare, le
sequenze di uno stesso genoma vengono inizialmente filtrate con una fase
di pre-filtering (cioè con soglie basse e prefissate), successivamente le coppie
candidate vengono processate con lo stesso tipo di confronto ma con il valore
k calcolato all’inizio e con una soglia minima rappresentata dalla similarità
di Jaccard generalizzata, calcolata appositamente per ogni genoma.

Le coppie di geni individuate saranno inserite, quindi, nel grafo contenente
tutte le coppie di geni candidate ad essere omologhe.

4.3.7 Perfezionamento delle relazioni di omologia

Nel software sviluppato questa fase è rimasta inalterata e si occupa, come già
descritto nel capitolo precedente, di processare il grafo prodotto mediante un
algoritmo di community detection, il quale individua le famiglie di geni vere
e proprie.

4.4 Implementazione

Rispetto ad alcune fasi del software appena descritte, di seguito sono presenti
alcuni commenti relativi a dettagli implementativi rilevanti che le riguardano.

4.4.1 Pre-filtering

Le attività di confronto tra geni sono basate, essenzialmente, sull’analisi del
numero di occorrenze di un dato k-mero.

Sapendo che la cardinalità dell’alfabeto nucleotidico è pari a 4 e che in
questa fase il valore k è stato fissato non empiricamente a 6, il numero di
k-meri possibili è pari a 46 = 4096.

Ogni sequenza di input dovrà essere riconducibile ad una struttura dati
nella quale saranno memorizzate le cardinalità di tutti i suoi k-meri. Volendo
indicizzare tali k-meri sotto forma di stringhe e supponendo di memorizzare
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solo i k-meri effettivamente riscontrati, lo spazio richiesto (per ogni sequenza),
nel caso pessimo, sarebbe pari a 4096 k-meri riscontrati * 7 byte per ogni
stringa del k-mero = ∼ 29 Kb.

Durante lo sviluppo del software è stata implementata un’indicizzazione
più efficiente mediante un array di interi di dimensione 4096, nel quale ogni
elemento corrisponde ad un k-mero. In questo caso i k-meri riscontrati non
vengono inseriti di volta in volta bens̀ı l’array ha la stessa dimensione del
numero di tutti i k-meri possibili, quindi lo spazio richiesto è sempre pari a
4096 k-meri riscontrati * 4 byte per ogni valore intero = ∼ 16 Kb.

Per realizzare questo tipo di indicizzazione si necessita di una relazione
numerica tra un determinato k-mero sotto forma di stringa e un valore intero
compreso tra 0 e 4095.

Per ottenere ciò è possibile convertire un determinato k-mero apparte-
nente ai 4096 possibili, in una stringa di bit univoca.

In particolare, conoscendo la cardinalità dell’alfabeto nucleotidico è pos-
sibile comporre sequenze di bit associate a stringhe formate a partire da tale
alfabeto, utilizzando 2 bit per ogni nucleotide:

• A: 00

• C: 01

• G: 10

• T: 11

In questo modo, ogni nucleotide del k-mero viene concatenato sotto forma
di bit attraverso un tipo di operazione bit a bit che permette di spostare a
sinistra i bit già memorizzati e di confrontare con un’operazione XOR i nuovi
bit da aggiungere, generando una nuova sequenza di bit nella quale i nuovi
aggiunti si trovano alla fine.

Tale sequenza di bit corrisponde ad un numero intero che rappresenta
proprio un indice univoco della struttura dati (tra 0 e 4095) nella quale ven-
gono enumerati i k-meri.

Per il confronto tra coppie di genomi sono state ideate due possibili
implementazioni, distinte da una diversa decomposizione del dominio.

Una prima implementazione prevede di confrontare coppie di genomi in
due for-loop annidati, nel quale le iterazioni del ciclo interno vengono eseguite
in parallelo.

Una seconda implementazione, invece, prevede di costruire un vector con-
tenente identificatori di coppie di geni appartenenti ai due genomi da con-
frontare. Per il confronto tra questi ultimi, quindi, le attività di analisi del

34



CAPITOLO 4. METODOLOGIA

numero di occorrenze di un dato k-mero, avvengono in iterazioni parallele
per ogni coppia di sequenze.

In base ai test sperimentali condotti (e descritti successivamente), all’in-
terno del software è presente solo la seconda implementazione, in quanto la
prima non sfrutta al meglio un’eventuale alta disponibilità di unità computa-
zionali perché sensibile al numero di genomi da analizzare e/o alla dimensione
di ogni genoma.

In particolare, dato un dataset composto da n genomi, se n2 (corrispon-
dente al numero di confronti tra coppie genomi) è minore del numero di unità
computazionali, allora tra queste ultime ce ne saranno alcune del tutto inu-
tilizzate, dato che l’esecuzione parallela avviene proprio durante i confronti
tra coppie di genomi.

Inoltre, i test sperimentali condotti hanno dimostrato che avendo un nu-
mero di genomi molto più basso rispetto al numero di unità computazionali,
ognuno caratterizzato da una dimensione di geni notevole, i tempi di esecu-
zione sono fino al 50% più alti rispetto ai tempi di esecuzione di questa stessa
fase che adotta la seconda implementazione ideata.

Per entrambe le implementazioni, la libreria OpenMP si occupa di aprire
la regione parallela e di distribuire le iterazioni su un numero di thread pari
al numero di core disponibili.

Dal momento che gli identificatori delle coppie di geni candidate ad essere
omologhi vengono memorizzate in un vector, bisogna tener conto del fatto che
l’operazione di inserimento del contenitore vector non è thread-safe in quanto
è una struttura dati che, in caso di esaurimento dello spazio disponibile,
provvede alla riallocazione della memoria e alla copia degli elementi, però
quest’ultima operazione è indipendente dalla computazione concorrente dei
thread e potrebbe produrre una perdita di dati.

Per ovviare a questo problema, ogni thread inserisce le coppie di geni
candidate ad essere omologhi in un vector locale e, al termine di ogni con-
fronto tra coppie di genomi, tutti i thread, all’interno di una sezione critica,
accodano i dati raccolti all’interno del vector globale.

4.4.2 Calcolo della similarità di sequenza

In questa fase, nel confronto tra coppie di genomi si prenderà in considera-
zione il valore k calcolato. Tale valore può essere più grande o più piccolo del
valore k prefissato nella prima fase, ed è giusto ricordare che un dataset di
tipo nucleotidico genererà un valore k più grande rispetto ad un dataset am-
minoacidico, in quanto la cardinalità dell’alfabeto nucleotidico è nettamente
inferiore rispetto ad una cardinalità di un alfabeto amminoacidico.
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Quindi, in base alla formula descritta nella sezione 3.2.1, il logaritmo al
denominatore sarà più piccolo ed è per questo motivo che il valore k sarà più
grande.

Avendo un valore k fissato a 6, i k-meri possibili sono sempre 4096 e lo
spazio richiesto per ogni sequenza è modesto: ∼ 16 Kb

Tuttavia, supponendo di avere un valore k doppio, i k-meri possibili sa-
rebbero 412 e, lo spazio richiesto per enumerare i k-meri di ogni sequenza in
un array di interi sarebbe pari a 412 * 4 byte = ∼ 67 Mb.

Pertanto, per questa fase, è stato necessario trovare una soluzione in grado
di enumerare moltissimi k-meri diversi in una quantità di spazio ragionevole,
mantenendo possibilmente, lo stesso metodo di indicizzazione già implemen-
tato.

La Utility library del C++ offre una classe templatica per memorizzare
una sequenza di N bit: std::bitset< N >.

Tale classe permette di effettuare le operazioni bit a bit più comuni quali
AND, OR, NOT, XOR e binary shifting, quindi si presta perfettamente a
questo caso d’uso.

A livello implementativo, questa struttura dati è una specializzazione del
contenitore vector parametrizzato sul tipo bool e da 0 a 64 bit memorizzati,
sono necessari 8 byte.

Il confronto tra coppie di genomi avviene esclusivamente tra le coppie di
geni identificate nella fase precedente e, nello specifico, il confronto tra le tipo-
logie di k-meri consiste nella creazione di una tabella nella quale convergono
le enumerazioni dei k-meri di entrambi i geni. Tale struttura dati conterrà
occorrenze univoche per un determinato k-mero e le relative quantità presenti
nella coppia di geni.

In questo modo è possibile realizzare lo stesso tipo di confronto e conteg-
gio della fase di pre-filtering, esaminando, però, solo le occorrenze dei k-meri
effettivamente riscontrati e non quelle relative ai 4k k-meri possibili.

Anche in questa fase la parallelizzazione è affidata alla libreria OpenMP,
che si occupa della suddivisione del lavoro e della sincronizzazione tra i
thread. Eventuali perdite di dati vengono evitate, similmente alla fase di
pre-filtering, con barriere e sezioni critiche offerte dalla libreria.

4.4.3 Perfezionamento delle relazioni di omologia

Considerato l’obiettivo di sviluppare un software che sfrutti le risorse di calco-
lo con il massimo grado di parallelismo possibile, l’implementazione di questa
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fase è stata leggermente modificata in modo tale da permettere al software di
utilizzare in maniera più efficiente le risorse di calcolo durante le operazioni
di community detection.

In questa fase, viene utilizzata un’implementazione dell’algoritmo di Girwan-
Newman, fornita da una libreria Python, per lo studio di grafici e reti che si
chiama NetworkX. L’algoritmo fornito dalla libreria si occupa di calcolare la
betweenness centrality degli archi e di eliminare progressivamente coloro che
presentano i valori più alti.

Per il calcolo della betweenness centrality di un arco in un insieme di nodi,
la libreria NetworkX utilizza l’algoritmo di Ulrik Brandes, esposto nell’arti-
colo scientifico Ulrik Brandes (2001) A faster algorithm for betweenness cen-
trality, The Journal of Mathematical Sociology, [Brandes, 2001], dato dalla
seguente espressione:

cB(v) =
∑︂

s∈S,t∈T

σ(s, t|e)
σ(s, t)

dove:

• S è l’insieme dei nodi di partenza per il calcolo dei cammini minimi;

• T è l’insieme dei nodi di arrivo per il calcolo dei cammini minimi;

• e è l’arco di cui si vuole calcolare la betweenness centrality ;

• σ(s, t) è il valore del cammino minimo tra un nodo di partenza s ∈ S
e un nodo di arrivo t ∈ T ;

• σ(s, t|e) è il valore del cammino minimo tra un nodo di partenza s ∈ S
e un nodo di arrivo t ∈ T , passante per l’arco e.

A livello implementativo, quindi, questa operazione è una somma dei ri-
sultati relativi al calcolo dei cammini minimi, i quali possono essere calcolati
l’uno indipendentemente dagli altri.

NetworkX riporta all’interno della propria documentazione ufficiale una
possibile implementazione parallela per il calcolo della betweenness centrality
di un arco, la quale consiste nel dividere in chunk l’insieme di nodi della
componente connessa, consentendo ad unità di calcolo separate di svolgere
lo stesso tipo di operazione.

Tale implementazione è stata integrata nello script dello stato dell’arte
e utilizzata solo quando la componente connessa da analizzare ha una di-
mensione superiore a 100, in quanto, a seguito dei test effettuati con una
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dimensione inferiore, il tempo di overhead, dovuto al parallelismo, determina
un tempo totale superiore all’implementazione sequenziale.

In particolare, l’algoritmo si occupa di dividere i nodi della componente
connessa in chunk e poi, attraverso un modulo appartenente alla libreria
standard di Python, denominato multiprocessing, il calcolo della betweenness
centrality di un determinato arco, relativa ad un chunk di nodi, avviene
su più thread. Quando tutti i thread terminano le operazioni di calcolo,
avviene un’operazione di riduzione che consiste nel sommare tutti i contributi
relativi alle betweenness centrality dei chunk alla betweenness centrality totale
dell’intera componente connessa.
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Risultati sperimentali

Al fine di ottenere risultati più simili possibile a quelli prodotti da PanDelos,
la cui validità è già stata dimostrata in letteratura, nonchè di misurare i tempi
di esecuzione e i requisiti di memoria RAM, presi determinati dataset di
genomi sintetici generati, il nuovo software sviluppato e PanDelos sono stati
testati sperimentalmente con questi ultimi e, successivamente, sono state
confrontate le due distribuzioni di famiglie geniche ottenute.

Ciò ha permesso di evidenziare le differenze nei risultati prodotti dai due
software e di analizzare le differenti prestazioni a parità di input.

5.1 PANPROVA

In tutti i test sperimentali effettuati, i genomi sintetici sono stati generati con
PANPROVA (PANgenomic PROkaryotic eVolution) [Bonnici and Giugno, 2022],
un software in grado di simulare l’evoluzione pangenomica procariotica par-
tendo da un genoma root.

A differenza di ALF, il software utilizzato per la generazione dei data-
set citato nella sezione 3.3, PANPROVA genera genomi sintetici nei quali si
presentano anche geni singleton, inoltre produce un report dettagliato sulla
distribuzione della famiglie geniche. In questo modo, attraverso i genomi
generati, è possibile effettuare un confronto tra le famiglie di geni e i ge-
ni singleton individuati da uno strumento pangenomico, e la distribuzione
corretta.

5.2 Test sperimentali

Con lo scopo di facilitare le esecuzioni dei test sperimentali, a seguito di nuove
modifiche al software, le procedure di sviluppo del software e di integrazione
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adottate hanno seguito un approccio denominato Continuous Integration/-
Continuous Deployment (CI/CD).

Questo approccio è caratterizzato da una serie di fasi automatizzate che
permettono un’integrazione continua del software sviluppato.

L’integrazione continua (CI) di un software consiste nel creare una build
della nuova versione di quest’ultimo, effettuare le dovute procedure di testing
del software e rilasciare le modifiche effettuate nel repository ufficiale.

Il Deployment continuo (CD) di un software consiste nel rilascio auto-
matico della nuova versione da un ambiente di test privato all’ambiente di
produzione, di norma pubblico. Gli automatismi di questo approccio per-
mettono di minimizzare i tempi del rilascio stesso nonchè eventuali tempi di
downtime dell’applicativo.

Nel contesto relativo allo sviluppo del software corrente, l’ambiente di
test privato è stato rappresentato dall’IDE (Integrated Development Envi-
ronment) CLion installato su un computer personale, mentre l’ambiente di
produzione è stato rappresentato da server virtuali di Amazon Web Services.

In particolare, è stato utilizzato il servizio Amazon Elastic Compute Cloud
(EC2) per creare macchine virtuali on-demand con sistema operativo Ubuntu
Server e con capacità di calcolo ridimensionabile.

Le macchine virtuali utilizzate appartengono alla tipologia commerciale
c6i, la quale adotta processori Intel Xeon Ice Lake 8375C @ 3.5 GHz.

A seconda dei test sperimentali condotti sono state utilizzate tali tipologie
di istanze con diversa dimensione in termini di CPU virtuale (vCPU). Nel-
lo specifico sono state utilizzate macchine virtuali da 1,2,4,8,16,32,48,64,96
vCPU, tenendo presente che ogni vCPU corrisponde ad un core fisico del
processore adottato.

5.2.1 Generazione dei dataset

Sono state condotte due tipologie di test sperimentali, entrambe basate sulla
generazione di due popolazioni di genomi sintetici appartenenti a due specie
batteriche diverse cioè Mycoplasma genitalium ed Escherichia coli.

Entrambe le popolazioni sono state generate partendo da un genoma root
sequenziato da un batterio reale, a partire dal quale è stata simulata la sua
evoluzione combinando processi di trasferimento orizzontale e trasferimento
verticale con altri genomi reali della stessa specie, in un ordine filogenetico
casuale.

Considerando che la dimensione genica della specie batterica Escherichia
coli è circa 10 volte più grande rispetto a quella della specie batterica Myco-
plasma genitalium, il numero di genomi generati per tali specie differisce in
maniera sostanziale.
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In particolare, partendo dai genomi root mycoplasma genitalium G37 ed
escherichia coli O157H7, sono stati generati due dataset composti, rispetti-
vamente, da una popolazione di 16 genomi di Escherichia coli ed una popo-
lazione di 64 genomi di Mycoplasma genitalium.

Ogni genoma generato da PANPROVA è suddiviso in tre file con esten-
sioni diverse:

• Il file .fna contiene la sequenza completa del DNA;

• Il file .gff contiene le coordinate dei geni relative alla sequenza di DNA
descritta nel file .fna con struttura TSV (tab-separated values);

• Il file .gbff contiene, anch’esso, le coordinate dei geni, ma con una
diversa struttura.

Per ogni genoma, attraverso uno script presente nel software dello stato
dell’arte, i tre file esso costituente vengono utilizzati per generare un unico
file con estensione gbk. Questa estensione rappresenta un file nel formato
standard GenBank, utilizzato per memorizzare la sequenza nucleotidica e i
metadati del genoma, nonchè le relative coordinate di ogni gene.

Inoltre, con uno script diverso (anch’esso presente nel software dello stato
dell’arte), viene generato un unico file con estensione .faa (FASTA) composto
da tutte le sequenze di geni appartenenti ad n file .gbk.

In particolare, all’interno di un file FASTA, ogni gene è identificato da
due stringhe. La prima stringa contiene informazioni di indicizzazione sia per
il genoma di appartenenza che per tutto il file, la seconda contiene l’intera
sequenza, nucleotidica o amminoacidica, del gene.

Per entrambe le popolazioni generate sono stati utilizzati questi due script
per costruire file FASTA composti, a seconda della specie batterica, da 2
a 64 genomi con l’obiettivo di misurare i tempi di esecuzione del software
sviluppato e i requisiti di memoria RAM, nonchè di confrontare i risultati
ottenuti dal nuovo software sviluppato e PanDelos.

Inoltre, tenendo presente che sono state ideate ed implementate due ver-
sioni della fase di pre-filtering, i test sperimentali sono stati condotti su ta-
li versioni ed hanno prodotto differenze sostanziali in termini di tempi di
esecuzione e requisiti di di memoria RAM.
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5.3 Tempi di esecuzione

Di seguito sono presentati i dati relativi ai tempi di esecuzione, in forma
tabellare, testuale e grafica, ottenuti dai test sperimentali basati sulle due
popolazioni batteriche già descritte.

5.3.1 Mycoplasma genitalium

Questa sezione si occupa di rappresentare dei dati relativi al dataset di
Mycoplasma genitalium.

Le tabelle 5.1 e 5.2, rispettivamente rappresentate in forma grafica nelle
figure 5.1 e 5.2, mostrano un resoconto dei tempi di esecuzione del software
sviluppato e PanDelos, relativi ai test sperimentali condotti sulla specie My-
coplasma genitalium. La prima colonna contiene il numero di genomi che
compongono il dataset in input, mentre le successive contengono i dati re-
lativi ai tempi di esecuzione a seconda del numero di core a disposizione.
L’ultima colonna contiene i tempi di esecuzione di PanDelos.

In generale, il software sviluppato, avendo a disposizione basse risorse di
calcolo (da 1 a 4 vCPU), produce i risultati in tempi più lunghi rispetto a
quelli prodotti da PanDelos.

Viceversa, avendo a disposizione risorse di calcolo medio-grandi, anche
con un numero di genomi elevato (128), il software sviluppato produce i
risultati in tempi generalmente minori rispetto a quelli prodotti da PanDelos.

Inoltre, l’utilizzo dell’implementazione del parallelismo nel confronto tra
coppie di geni, nella fase di pre-filtering, permette di eseguire quest’ultima in
una quantità di tempo tra il 5% e 12% in meno rispetto all’esecuzione con
l’implementazione del parallelismo nel confronto tra coppie di genomi.

Da notare che, utilizzando l’implementazione del parallelismo nel confron-
to tra coppie di genomi, sono presenti limiti visibili ai tempi minimi ottenibili
per un certo numero di genomi. Ad esempio il tempo necessario per produr-
re i risultati con 16 genomi in input non cambia sensibilmente da 32 vCPU
(20”) a 96 vCPU (15”). Viceversa, prendendo in considerazione lo stesso
numero di genomi, con l’implementazione del parallelismo nel confronto tra
coppie di geni, la quantità di tempo necessaria per produrre i risultati con 32
vCPU è del 41% più alta rispetto a quella necessaria per produrre i risultati
con 96 vCPU.
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Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 2” 1” 1” 1” 1” 1” 1” 1” 1” 1”

4 6” 4” 3” 3” 2” 2” 2” 2” 2” 4”

6 13” 8” 8” 4” 4” 4” 4” 4” 4” 6”

8 25” 14” 12” 6” 6” 6” 6” 6” 6” 9”

10 43” 24” 21” 10” 9” 8” 8” 8” 8” 13”

12 68” 40” 33” 15” 14” 13” 10” 11” 10” 14”

14 97” 55” 47” 21” 18” 16” 13” 13” 12” 21”

16 2.1’ 1.18’ 60” 25” 22” 20” 16” 15” 15” 27”

32 - 10.06’ 8’ 3.28’ 2.38’ 1.48’ 1.28’ 1.15’ 1’ 1.1’

64 - - 22’ 12’ 6.05’ 4.2’ 3.33’ 3’ 2.55’ 5.23’

128 - - - 24’ 20’ 13.2’ 10.5’ 9’ 8’ 20’

Tabella 5.1: Tempi di esecuzione Mycoplasma genitalium - implementazione
del parallelismo nel confronto tra coppie di genomi nella fase di pre-filtering

Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 2” 1” 1” 1” 1” 0” 1” 0” 0” 1”

4 7” 3” 3” 2” 1” 1” 1” 1” 1” 4”

6 14” 7” 6” 3” 2” 1” 1” 2” 2” 6”

8 26” 13” 11’ 7” 4” 3” 2” 2” 2” 9”

10 44” 23” 20” 10” 7” 5” 3” 4” 4” 13”

12 1.1’ 38” 31” 17” 11” 7” 6” 6” 5” 14”

14 1.4’ 54” 45” 24” 15” 9” 7” 7” 6” 21”

16 2.11’ 1.11’ 1’ 32” 22” 12” 10” 9” 7” 27”

32 - 9.32’ 7.38’ 4’ 2.15’ 1.23’ 1.04’ 57” 46” 1.1’

64 - - 21’ 11.15’ 6.2’ 3.47’ 2.55’ 2.39’ 2.6’ 5.23’

128 - - - 32’ 19.53’ 12’ 9.34’ 8.29’ 7.1’ 20’

Tabella 5.2: Tempi di esecuzione Mycoplasma genitalium - implementazione
del parallelismo nel confronto tra coppie di geni nella fase di pre-filtering
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Figura 5.1: Tempi di esecuzione Mycoplasma genitalium 2-16 e 32-128
genomi - implementazione del parallelismo nel confronto tra coppie di

genomi nella fase di pre-filtering
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Figura 5.2: Tempi di esecuzione Mycoplasma genitalium 2-16 e 32-128
genomi - implementazione del parallelismo nel confronto tra coppie di geni

nella fase di pre-filtering
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5.3.2 Escherichia coli

Le tabelle 5.3 e 5.4, rappresentate in forma grafica nella figura 5.3, mostrano
un resoconto dei tempi di esecuzione del software sviluppato e PanDelos,
relativi ai test sperimentali condotti sulla specie Escherichia coli.

In generale, i tempi di esecuzione dei test sperimentali condotti con questa
specie batterica sono più lunghi rispetto a quelli relativi ai test sperimentali
condotti con la specie batterica Mycoplasma genitalium, data la maggiore
dimensione genica.

Inoltre, utilizzando l’implementazione del parallelismo nel confronto tra
coppie di genomi nella fase di pre-filtering, nonostante l’ausilio di una note-
vole capacità di calcolo, i tempi di esecuzione sono molto più alti rispetto a
quelli di PanDelos.

Viceversa, utilizzando l’implementazione del parallelismo nel confronto
tra coppie di geni nella fase di pre-filtering, nel complesso i tempi di ese-
cuzione sono più bassi, ma comunque più alti dei tempi di esecuzione di
PanDelos.

Tuttavia, utilizzando l’implementazione del parallelismo nel confronto tra
coppie di geni nella fase di pre-filtering, e avendo a disposizione una notevole
capacità di calcolo, i tempi di esecuzione sono più bassi rispetto a quelli di
PanDelos.

Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 - - - 5.46’ 3.3’ 2.3’ 2.1’ 2’ 1.45’ 20”

4 - - - 27’ 15.35’ 10’ 8’ 7.16’ 6’ 1’

6 - - - - 22.23’ 14.38’ 12.10’ 11.8’ 10’ 2.1’

8 - - - - - 21’ 17.22’ 16’ 14’ 4’

10 - - - - - - 19.3’ 18’ 15.4’ 5.1’

12 - - - - - - 24.33’ 22.18’ 20.7’ 8’

14 - - - - - - 30.19’ 27.32’ 25.26’ 16’

Tabella 5.3: Tempi di esecuzione Escherichia coli 2-14 genomi -
implementazione del parallelismo nel confronto tra coppie di genomi nella

fase di pre-filtering
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Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 - - - 4.47’ 2.32’ 1.2’ 58” 49” 32” 20”

4 - - - 24.5’ 12.4’ 6.31’ 4.31’ 3.42’ 2.31’ 1’

6 - - - - 18’ 9.13’ 6.23’ 5.15’ 3.38’ 2.1’

8 - - - - - 13.34’ 9.22’ 7.46’ 5.19’ 4’

10 - - - - - - 10.54’ 9’ 6.2’ 5.1’

12 - - - - - - 13.31’ 11.16’ 7.49’ 8’

14 - - - - - - 18.14’ 15.9’ 10.32’ 16’

16 - - - - - - 24’ 20’ 14’ 19’

Tabella 5.4: Tempi di esecuzione Escherichia coli 2-16 genomi -
implementazione del parallelismo nel confronto tra coppie di genomi nella

fase di pre-filtering
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Figura 5.3: Tempi di esecuzione Escherichia coli 2-14 genomi -
implementazione del parallelismo nel confronto tra coppie di genomi e geni

nella fase di pre-filtering
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5.4 Requisiti di memoria RAM

I requisiti di memoria RAM del software sviluppato sono stati misurati con
il comando /usr/bin/time -f”%M”, il quale restituisce il picco massimo di
memoria richiesta da un processo.

Dai dati raccolti si evidenzia una crescita dei requisiti di memoria RAM al
crescere del numero di unità di calcolo utilizzate. Ciò è dato dalla presenza
del thread local storage, cioè uno spazio di memoria privato posseduto da
ogni thread. Ne consegue che l’utilizzo di molte unità di calcolo comporta un
naturale aumento dei requisiti di memoria RAM. In aggiunta, tutti i thread
effettuano, in parallelo, confronti tra coppie di genomi e/o tra coppie di geni
e quindi ognuno necessiterà di spazio in RAM per i propri calcoli.

5.4.1 Mycoplasma genitalium

Le tabelle 5.5 e 5.6 mostrano un confronto dei requisiti di memoria RAM (in
gigabyte) tra il software sviluppato e PanDelos, relativi ai test sperimentali
condotti sulla specie Mycoplasma genitalium.

In questa tipologia di test, con un numero di genomi crescente, PanDelos
presenta un aumento lineare della quota di memoria RAM richiesta.

Il software sviluppato, invece, nonostante per dimensioni di genomi mo-
deste, abbia requisiti di memoria RAM inferiori rispetto a quelli di PanDelos,
presenta globalmente un aumento esponenziale degli stessi.

Inoltre, l’implementazione del parallelismo nel confronto tra coppie di
geni nella fase di pre-filtering ha, tendenzialmente, dei requisiti di memoria
RAM più alti rispetto all’utilizzo dell’implementazione del parallelismo nel
confronto tra coppie di genomi, perché utilizza ogni core a disposizione per
confrontare coppie di geni.
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Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 0.08 0.08 0.08 0.08 0.09 0.09 0.09 0.10 0.10 0.34

4 0.15 0.15 0.16 0.16 0.17 0.18 0.19 0.21 0.22 1.01

6 0.24 0.25 0.25 0.25 0.26 0.27 0.28 0.31 0.32 2.04

8 0.30 0.30 0.31 0.31 0.32 0.33 0.34 0.37 0.38 3.07

10 0.42 0.42 0.42 0.42 0.43 0.33 0.34 0.37 0.38 3.08

12 0.46 0.46 0.47 0.47 0.48 0.49 0.50 0.54 0.54 3.07

14 0.51 0.51 0.51 0.52 0.52 0.54 0.55 0.59 0.60 3.05

16 0.56 0.56 0.56 0.56 0.57 0.59 0.60 0.63 0.65 3.10

32 - 1.07 1.07 1.07 1.08 1.10 1.12 1.15 1.18 3.19

64 - - 2.18 2.18 2.19 2.21 2.23 2.26 2.29 3.35

128 - - - 4.75 4.75 4.78 4.80 4.82 4.86 3.50

Tabella 5.5: Requisiti di memoria RAM Mycoplasma genitalium -
implementazione del parallelismo nel confronto tra coppie di genomi nella

fase di pre-filtering

Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 0.04 0.04 0.05 0.06 0.06 0.07 0.07 0.08 0.09 0.34

4 0.11 0.11 0.10 0.09 0.11 0.14 0.15 0.16 0.19 1.01

6 0.18 0.17 0.18 0.18 0.19 0.20 0.22 0.23 0.27 2.04

8 0.21 0.22 0.22 0.23 0.23 0.24 0.26 0.27 0.31 3.07

10 0.31 0.32 0.32 0.31 0.33 0.34 0.34 0.37 0.41 3.08

12 0.33 0.33 0.34 0.34 0.35 0.36 0.38 0.39 0.43 3.07

14 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.45 3.05

16 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.48 3.10

32 - 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39 3.19

64 - - 4.88 4.88 4.88 4.88 4.88 4.88 4.88 3.35

128 - - - 18.30 18.30 18.30 18.30 18.302 18.30 3.50

Tabella 5.6: Requisiti di memoria RAM Mycoplasma genitalium -
implementazione del parallelismo nel confronto tra coppie di geni nella fase

di pre-filtering

5.4.2 Escherichia coli

Le tabelle 5.7 e 5.8 mostrano un confronto dei requisiti di memoria RAM tra
il software sviluppato e PanDelos, relativi ai test sperimentali condotti sulla
specie Escherichia coli.

In questa tipologia di test, diversamente dalla precedente, PanDelos pre-
senta un aumento esponenziale della quota di memoria RAM richiesta, con
un picco di circa 63 Gb per elaborare un dataset composto da 16 genomi.
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Anche il software sviluppato mantiene, come per la precedente tipologia
di test, un aumento esponenziale. Tuttavia, i requisiti di memoria RAM so-
no sempre inferiori rispetto a quelli di PanDelos, soprattutto quando viene
utilizzata l’implementazione del parallelismo nel confronto tra coppie di ge-
nomi, che tuttavia, contrariamente all’implementazione del parallelismo nel
confronto tra coppie di geni, è più lenta.

Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 - - - 0.88 0.90 0.90 0.91 0.92 0.92 4.81

4 - - - 1.72 1.73 1.73 1.74 1.74 1.75 7.59

6 - - - - 2.23 2.26 2.30 2.31 2.33 6.87

8 - - - - - 3.22 3.23 3.24 3.25 6.78

10 - - - - - - 3.51 3.56 3.58 8.56

12 - - - - - - 3.91 3.92 3.92 54.73

14 - - - - - - 5.87 5.88 5.89 60.41

Tabella 5.7: Requisiti di memoria RAM Escherichia coli - implementazione
del parallelismo nel confronto tra coppie di genomi nella fase di pre-filtering

Dim 1 2 4 8 16 32 48 64 96 PanDelos

2 - - - 0.59 0.60 0.60 0.61 0.63 0.66 4.81

4 - - - 2.55 2.55 2.55 2.55 2.55 2.55 7.59

6 - - - - 4.87 4.87 4.87 4.87 4.88 6.87

8 - - - - - 9.35 9.35 9.35 9.45 6.78

10 - - - - - - 9.45 9.45 9.45 8.56

12 - - - - - - 18.21 18.21 18.21 54.73

14 - - - - - - 35.58 35.58 35.58 60.41

16 - - - - - - 35.84 35.84 35.84 63.34

Tabella 5.8: Requisiti di memoria RAM Escherichia coli - implementazione
del parallelismo nel confronto tra coppie di geni nella fase di pre-filtering

5.5 Contenuto pangenomico

Dopo aver analizzato i confronti tra le performance dei due software, è ne-
cessario analizzare qualitativamente la nuova metodologia e confrontarla con
PanDelos, al fine di evidenziare eventuali incongruenze nei risultati.

Infatti, la sostituzione delle strutture dati, originariamente poco paralle-
lizzabili, ha portato ad una leggera modifica nelle funzionalità del software.
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In particolare, è state eliminata la soglia definita nella sezione 3.2.2, ed è
stata introdotta la soglia definita nella sezione 4.3.2.

Per effettuare questo tipo di analisi, ad esempio con la specie Mycoplasma
genitalium, è possibile generare diversi dataset sintetici di diversa dimensione
con PANPROVA e confrontare le distribuzioni pangenomiche che producono
i due software con quella prodotta dal generatore.

Di seguito sono presenti i grafici che sintetizzano tali analisi, condotte con
dataset costituiti da 2 a 128 genomi di Mycoplasma genitalium.

I grafici presenti nella figura 5.4 si riferiscono al confronto delle distribu-
zioni pangenomiche relative a 2 e 4 genomi. In queste due distribuzioni si
presenta una perfetta sovrapposizione tra i risultati.

I grafici presenti nella figura 5.5 si riferiscono al confronto delle distribu-
zioni pangenomiche relative a 8 e 16 genomi. In queste due distribuzioni sono
presenti piccole discrepanze per quanto riguarda le parti di sinistra e destra
della distribuzione, mentre le parti centrali sono esattamente uguali.

I grafici presenti nella figura 5.6 si riferiscono al confronto delle distri-
buzioni pangenomiche relative a 32 e 64 genomi. Nel secondo grafico si
evidenzia uno scostamento, dalla distribuzione pangenomica di PANPRO-
VA, verso le parti iniziali e finali delle due distribuzioni. In particolare, il
software sviluppato tende ad estrarre più geni singleton e meno geni core.

Il grafico presente nella figura 5.7 si riferisce al confronto delle distribuzio-
ni pangenomiche relative a 128 genomi. In questo caso, il software sviluppato
tende ad estrarre più geni core rispetto a PanDelos, allineandosi meglio alla
distribuzione pangenomica di PANPROVA.
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Figura 5.4: Confronto delle distribuzioni pangenomiche - Mycoplasma
genitalium, 2-4 genomi
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Figura 5.5: Confronto delle distribuzioni pangenomiche - Mycoplasma
genitalium, 8-16 genomi
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Figura 5.6: Confronto delle distribuzioni pangenomiche - Mycoplasma
genitalium, 32-64 genomi
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Figura 5.7: Confronto delle distribuzioni pangenomiche - Mycoplasma
genitalium, 128 genomi
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Conclusione

L’obiettivo principale di questa tesi è stato ricercare ed implementare una
metodologia scalabile per calcolare l’omologia di sequenza tra geni. In tale
ambito, sono state affrontate problematiche di ricerca ed implementazione di
algoritmi per la scoperta del contenuto pangenomico.

Le soluzioni ricercate sono state progettate e sviluppate con lo scopo
di massimizzare l’efficienza computazionale e minimizzare, quindi, l’utilizzo
delle risorse hardware.

Tale scopo è stato ottenuto massimizzando il grado di parallelismo delle
strutture dati e, quindi, degli algoritmi applicati per il calcolo della omologia.

Lo stato dell’arte da cui è partita la ricerca, è PanDelos, uno dei migliori
software, a livello qualitativo, per la scoperta del contenuto pangenomico
[Bonnici et al., 2018].

In particolare, dopo aver analizzato nel dettaglio il funzionamento del
software e aver condotto test sperimentali preliminari al fine di identificare
eventuali criticità, la prosecuzione del lavoro è stata caratterizzata dalla ri-
cerca di una nuova metodologia scalabile per calcolare l’omologia di sequenza
tra geni.

La metodologia individuata rispetta le caratteristiche dei metodi per la
scoperta del contenuto pangenomico, in quanto per ogni gene permette di
trovare i geni più simili all’interno degli altri genomi. Tale metodologia,
inoltre, appartiene agli approcci senza allineamento ed è basata sull’enume-
razione e analisi dei k-meri appartenenti a coppie di sequenze geniche, al fine
di quantificare una similarità e inferire una omologia.

Dai test sperimentali condotti, i risultati ottenuti mostrano che, ad esem-
pio, per la specie Mycoplasma genitalium, la metodologia individuata risulta
vantaggiosa (in termini di risorse hardware richieste) a partire da 16 genomi
in input, in quanto sono necessari almeno 12 core per ottenere tempi migliori
rispetto a PanDelos. Inoltre, è emerso che a parità del numero di core utiliz-
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zati, la nuova metodologia utilizza meno memoria RAM.

Riguardo la qualità dei risultati, sono stati eseguiti dei test preliminari
al fine di confrontare le distribuzioni pangenomiche prodotte dal software
sviluppato con quelle prodotte da PanDelos e PANPROVA.

Da tali test è emerso che nella maggior parte dei casi, il software svi-
luppato produce risultati compatibili con quelli prodotti da PanDelos, anche
se uno dei possibili sviluppi futuri potrebbe riguardare una ricerca più ap-
profondita di situazioni nelle quali il software sviluppato produce risultati
qualitativamente migliori rispetto a quelli di PanDelos, o viceversa.

Altri possibili sviluppi futuri di questa tesi possono riguardare i seguenti
aspetti:

• Ricerca di nuovi metodi di decomposizione del dominio relativo alle
sequenze di geni in input;

• Ricerca di nuovi algoritmi più efficienti nell’utilizzo di risorse hardware
e/o più performanti nelle attività di calcolo parallelo;

• Implementazione della metodologia ideata in un nuovo software che
faccia uso della programmazione CUDA per sfruttare le potenzialità
dell’altissima parallelizzazione dell’architettura delle GPU;

• Sviluppo di un sistema software per le analisi pangenomiche aperto alle
estensioni di nuovi algoritmi per la scoperta del contenuto pangenomico
(tra cui la metodologia presentata in questa tesi). Tale sistema soft-
ware potrebbe adottare il modello di servizio del software Software as a
service, consentendo agli utilizzatori di fornire i dati di input e ricevere
i risultati attraverso API pubbliche o private.
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