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Introduzione

DevOps is not a goal, but a never-ending process of continual improvement. [Kim et al., 2016]

Questa frase di Jez Humble riflette perfettamente l’evoluzione delle praticheDe-
vOps [1.1] nel mondo dello sviluppo software moderno, perché l’idea di un ”never-
ending process of continual improvement” implica una mentalità di miglioramento
continuo (continuous improvement) e apprendimento iterativo.
Questo concetto si basa su pratiche come la continuous integration e il conti-

nuous delivery, che sono diventati elementi fondamentali per accelerare i cicli di
sviluppo e migliorare la qualità del software.

Tuttavia, queste pratiche hanno determinato nuove problematiche di sicurezza,
portando all’emergere del DevSecOps [1.2], un approccio che integra la sicurezza
in ogni fase del ciclo di vita del software, a differenza delle metodologie tradizionali,
in cui i controlli di sicurezza erano relegati alle fasi finali dello sviluppo.
Eppure nel contesto delle architetture a microservizi [A.0.1], le tradiziona-

li metodologie di analisi di sicurezza, consistenti nell’utilizzo di tool di sicurezza
[A.0.59] per rilevare vulnerabilità, spesso si rivelano inadeguate.
In particolare, i tool di analisi esistenti, sebbene efficaci nei loro ambiti speci-

fici, spesso mancano di capacità di integrazione e di una visione olistica necessaria
per affrontare i rischi emergenti dall’interazione tra microservizi [A.0.1] eterogenei,
spesso immersi in infrastrutture complesse e ad alta diversità tecnologica.

Questa tesi si propone di colmare questa lacuna sviluppando una metodologia
per l’analisi di sicurezza nelle architetture a microservizi, progettata per fornire un
quadro sistematico e stratificato e in grado di adattarsi e reagire dinamicamente alle
specificità di ciascun componente del sistema, garantendo una copertura di sicurezza
comprensiva e dettagliata.
Questa metodologia è stata implementata e integrata con MoonCloud [3.1],

una piattaforma per la valutazione continua di conformità e di assurance [1.4] di
applicazioni e infrastrutture ICT, ed è stata applicata ad un caso di studio ri-
guardante un sistema IoT [A.0.80] complesso denominato UrbanIoT [4.1.2], un
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software di telegestione degli impianti di illuminazione pubblica e delle smart city.
L’obiettivo ultimo è garantire una copertura di sicurezza completa e dettagliata,

in grado di identificare e mitigare i rischi in modo efficace, promuovendo la resilien-
za [A.0.15] e l’affidabilità delle applicazioni moderne.

La tesi è strutturata come segue:
Nel capitolo 1 viene descritto lo stato dell’arte relativo alle principali metodolo-

gie e pratiche attuali nello sviluppo software, con particolare attenzione a DevOps,
DevSecOps, Security by Design e software assurance, e alle tecniche di analisi e
testing del codice.
Nel capitolo 2 vengono esposte le motivazioni e gli obiettivi della ricerca, evi-

denziando l’insufficiente applicazione delle tradizionali metodologie di analisi di si-
curezza nelle architetture a microservizi ed esplicando le motivazioni che hanno
condotto alla sviluppo della metodologia proposta.
Viene, inoltre, descritta la metodologia proposta, dettagliando le diverse fasi che

includono la definizione dei requisiti di sicurezza, la gap analysis, la threat analysis,
l’analisi della sicurezza per strati, la generazione del report di aggregazione e, infine,
l’impostazione del monitoraggio continuo.
Nel capitolo 3 viene presentata una panoramica delle tecnologie utilizzate, de-

scrivendo MoonCloud [3.1] e i tool di sicurezza utilizzati, quali Gosec [3.2.1], Bandit
[3.2.1], Trivy [3.2.2] e Lynis [3.2.3].
Nel capitolo 4 viene illustrata un’implementazione della metodologia proposta

attraverso l’analisi di un caso di studio riguardante il sistema IoT UrbanIoT. Ven-
gono, quindi, descritti i requisiti di sicurezza definiti, le gap analysis effettuate, le
threat analysis condotte e i controlli di sicurezza realizzati attraverso l’uso dei tool
di analisi statica [1.5] Gosec [4.5.1], Trivy [4.5.2], Lynis [4.5.5] e Bandit [4.5.6].
Nel capitolo 5 vengono presentati i risultati sperimentali ottenuti dall’applica-

zione della metodologia proposta, tra i quali il numero di vulnerabilità individua-
te, la loro distribuzione in base alla severità e ai diversi componenti del sistema,
nonché i livelli di rischio [A.0.37] complessivi e specifici associati alle vulnerabilità
identificate.
Nel capitolo 6 vengono tratte le conclusioni della tesi, evidenziando come la

metodologia proposta superi le limitazioni delle tecniche tradizionali di analisi di
sicurezza, offrendo un quadro completo e dettagliato delle vulnerabilità e dei ri-
schi associati in architetture a microservizi complesse. Vengono inoltre delineati i
possibili sviluppi futuri della ricerca.
Infine nell’appendice A sono presenti le definizioni relative alla terminologia

scientifica e ad altri concetti rilevanti per la comprensione del lavoro.



Capitolo 1

Stato dell’arte

Questo capitolo è dedicato allo stato dell’arte relativo alle principali metodologie
e pratiche attuali nel campo dello sviluppo software, con particolare attenzione a
DevOps, DevSecOps, Security by Design e software assurance.

La sezione 1.1 introduce il concetto di DevOps, evidenziando come l’integrazione
tra development e operations, insieme all’automazione e alla collaborazione, possa
ridurre i tempi di rilascio e migliorare la qualità del software. In particolare, verran-
no illustrati i principi fondamentali del DevOps e le fasi principali di una pipeline
DevOps.
Successivamente, la sezione 1.2 esplora l’evoluzione del DevOps verso il DevSe-

cOps, un approccio che integra la sicurezza nell’intero ciclo di vita dello sviluppo
del software. Saranno descritti i principi chiave del DevSecOps e le differenze ri-
spetto alle pratiche DevOps tradizionali, con un focus su come le pipeline DevSe-
cOps includano analisi delle vulnerabilità, controlli di configurazione e verifiche di
compliance.
La sezione 1.3 è dedicata al concetto di Security by Design, un approccio che

integra la sicurezza fin dalle prime fasi di progettazione del software. A tal proposito,
verranno discusse le pratiche di secure coding [A.0.60], verifica e validazione del
software [A.0.63] e l’importanza dell’analisi del rischio [A.0.38] per identificare e
mitigare le minacce in modo proattivo.
Infine, la sezione 1.4 descrive vari approcci e tecniche della software assurance,

che garantisce la qualità, l’affidabilità e la sicurezza dei sistemi software attraverso
pratiche di certificazione, formazione, analisi e testing del codice e modellazione
delle minacce.
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CAPITOLO 1. STATO DELL’ARTE 4

1.1 DevOps
DevOps è un concetto emergente nel campo dello sviluppo software che mira a
ridurre i tempi di rilascio di nuove versioni di applicativi attraverso l’integrazio-
ne delle attività di sviluppo (Development) e di quelle operative (IT Operations)
[Srivastav et al., 2023].

Questa metodologia si fonda su due principi cardine: l’automazione e la col-
laborazione. L’automazione impiega le tecnologie per minimizzare le operazioni
manuali, migliorando l’efficienza e la qualità dei processi e riducendo il margine di
errore [Bass et al., 2015]. La collaborazione, invece, consente di facilitare il flusso
di lavoro tra diversi team promuovendo un allineamento agli obiettivi organizzativi
[Luz et al., 2018].

DevOps si configura come una evoluzione del modello Agile [A.0.12], enfatiz-
zando rilasci più frequenti e di maggiore qualità attraverso pratiche di integrazio-
ne e distribuzione continua, note come CI/CD [Colavita, 2016]. Il Continuous
Integration (CI) assicura che ogni modifica apportata al codice sia automatica-
mente testata, identificando rapidamente eventuali errori, mentre il Continuous
Delivery and Deployment (CD) facilita il rilascio di nuove versioni attraverso
distribuzioni automatizzate [Davis and Daniels, 2016].

In particolare, nell’implementazione di pratiche di integrazione e distribuzio-
ne continue (CI/CD) all’interno di un ambiente DevOps, le pipeline DevOps
rappresentano un elemento fondamentale.
Una pipeline DevOps è una serie automatizzata di passaggi che consentono il

flusso continuo del codice sorgente attraverso varie fasi, dalla compilazione al ri-
lascio e al monitoraggio, al fine di favorire l’automazione di attività ripetitive e
ridondanti, consentendo un flusso di lavoro più efficiente e affidabile.

Le fasi principali di una pipeline DevOps sono:

• Build: compilazione del codice sorgente in un artifact [A.0.64] eseguibile;

• Test: esecuzione di test automatizzati per garantire che il software funzioni
correttamente e rispetti i requisiti di qualità;

• Deploy: il software viene distribuito in un ambiente di test o produzione,
eventualmente includendo il provisioning di risorse [A.0.2], la configurazione
dell’ambiente e il rilascio dell’applicazione in un ambiente di produzione;
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• Monitoraggio e feedback: una volta rilasciato, il software viene monitorato
per identificare eventuali problemi o degrado delle prestazioni. Il feedback rac-
colto durante questa fase viene utilizzato per migliorare il processo di sviluppo
e distribuzione.

1.2 DevSecOps
La metodologia DevSecOps si propone di integrare la sicurezza in ogni fase del
ciclo di vita dello sviluppo software, rendendola una responsabilità condivisa dall’i-
nizio alla fine [RedHat, 2024].

Nelle vecchie metodologie di sviluppo software, i test e i controlli di sicurezza era-
no relegati alle fasi finali dello sviluppo, tuttavia con l’avvento del DevOps, i tempi
di sviluppo si sono notevolmente accorciati, rendendo possibili controlli di sicurezza
continui e automatizzati lungo l’intero processo di sviluppo [Stol and Fitzgerald, 2022].
In particolare, il paradigma DevSecOps si propone di identificare e mitigare in

modo proattivo i rischi all’interno dell’intero ciclo di vita dello sviluppo del soft-
ware attraverso un approccio sistematico e integrato senza ostacolare l’agilità e la
velocità delle pratiche DevOps esistenti [Rahman, 2016].

Ad esempio nella fase di test di una classica pipeline DevOps [1.1] vengono ese-
guiti esclusivamente test automatici, mentre le pipeline DevSecOps sono configurate
per includere anche analisi delle vulnerabilità [A.0.30], controlli di configurazione e
verifiche di compliance [A.0.49].
Da notare che le pipeline DevSecOps sono solo una parte di un processo più gran-

de articolato in più fasi, in cui ognuna è pensata per integrare la sicurezza come un
elemento centrale del processo. Il fine ultimo è identificare e risolvere rapidamente
le vulnerabilità in ogni fase dello sviluppo e migliorare continuamente il prodotto
attraverso i feedback e l’analisi dei dati raccolti durante il monitoraggio, riducendo
così il tempo e il costo associati alla mitigazione dei rischi di sicurezza post-rilascio.

Le fasi principali di una pipeline DevSecOps sono:

1. Pianificazione: identificazione dei requisiti di sicurezza e delle metriche di
successo [Mohan and Singh, 2018];

2. Codifica: applicazione di pratiche di secure coding [A.0.60] e revisione del
codice peer-to-peer [A.0.62] [Mohan and Singh, 2018];

3. Build: utilizzo di strumenti di analisi statica e dinamica del codice per rilevare
vulnerabilità [Mohan and Singh, 2018];
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4. Testing: esecuzione di test di sicurezza automatizzati durante la fase di test
[Mohan and Singh, 2018];

5. Rilascio: implementazione di controlli di sicurezza automatizzati [A.0.41] nel
processo di rilascio [Mohan and Singh, 2018];

6. Monitoraggio: raccolta continua di dati sull’attività dell’applicazione per ri-
levare e rispondere tempestivamente a potenziali minacce [Mohan and Singh, 2018].

1.3 Security by Design
Molti dei problemi che minacciano la sicurezza delle applicazioni hanno le loro ra-
dici nella progettazione stessa, il che rende fondamentale l’adozione di pratiche di
Security by Design. Questo approccio non solo riduce il rischio di vulnerabilità,
ma consente anche di risparmiare tempo e risorse nel lungo periodo. [CISA, 2023]

Con Security by Design (SbD) ci si riferisce alla considerazione della sicurezza
come una parte essenziale dei processi di progettazione, sviluppo e manutenzione,
piuttosto che una esclusiva correzione post-sviluppo, la quale inizia nelle fasi iniziali
di sviluppo di un sistema software e termina con la fase di dismissione [A.0.18],
assicurando che i dati sensibili [A.0.48] siano protetti fino al termine dell’uso del
sistema [Chattopadhyay et al., 2020].
Uno degli elementi chiave della SbD è l’analisi del rischio [A.0.38], che deve

essere condotta regolarmente per identificare nuove vulnerabilità e minacce emer-
genti. Ciò permette agli sviluppatori di adeguare le misure di sicurezza in modo
proattivo anziché reattivo.
Altre pratiche di SbD riguardano il secure coding [A.0.60] e la verifica e valida-

zione del software [A.0.63], affinché gli errori siano identificati e corretti prima del
rilascio del sistema.

L’adozione di questo approccio è particolarmente rilevante in settori dove la si-
curezza è critica, come nel settore bancario, nei dispositivi medici, infrastrutture
critiche e dispositivi Internet of Things [A.0.80], dato che non solo migliora la resi-
lienza dei sistemi contro gli attacchi, ma riduce anche i costi associati alla gestione
delle emergenze di sicurezza post-sviluppo.

1.4 Software assurance
La software assurance è il livello di confidenza che il software funzioni come
previsto e che sia privo di vulnerabilità, progettate o inserite intenzionalmente o
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meno nel software durante tutto il suo ciclo di vita [IICS WG, 2015].

Da notare che la software assurance non aggiunge alcun controllo aggiuntivo per
contrastare i rischi legati alla sicurezza ma fornisce solo un livello di confidenza che
i controlli implementati ridurranno il rischio previsto [ISO, 2008].
In particolare, le pratiche di software assurance sono volte a garantire la qualità,

l’affidabilità e la sicurezza dei sistemi software.

1.4.1 Pratiche di software assurance
Certificazione e accreditamento
Insieme di attività formali volte a valutare e confermare che un sistema software
soddisfi determinati requisiti stabiliti da enti regolatori o standard internazionali.
La certificazione è solitamente eseguita da terze parti indipendenti, mentre l’ac-

creditamento riguarda l’approvazione di processi e pratiche aziendali da parte di
organismi di controllo [IEEE, 2014].
Ad esempio la certificazione ISO/IEC 27001 è uno standard internazionale

che descrive le best practice per avere un sistema di gestione della sicurezza delle
informazioni robusto e conforme ai requisiti dello standard, tra le quali figurano
l’analisi e la gestione dei rischi, il controllo degli accessi e la protezione dei dati
sensibili.
La certificazione richiede un audit [A.0.40] da parte di un ente accreditato, che

verifica l’efficacia dei controlli di sicurezza implementati.

Formazione ed educazione
Formazione da parte degli sviluppatori in merito a best practise di secure coding
e tecniche di software testing al fine dell’ottenimento di competenze necessarie per
sviluppare software sicuri e di elevata qualità [NIST, 2013], al fine di ridurre il rischio
di introdurre vulnerabilità e difetti di sicurezza che potrebbero essere sfruttati da
attaccanti.
Un esempio pratico di formazione in secure coding è la certificazione Certi-

fied Secure Software Lifecycle Professional erogata da ISC21 , un ente di
formazione internazionale. Questo programma di certificazione copre uno spettro
di competenze ampio, tra cui la progettazione sicura, il secure coding, il software te-
sting e il mantenimento del software, al fine di identificare e mitigare le vulnerabilità
del software in ogni fase del suo ciclo di vita.

1https://isc2.org

https://isc2.org
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Un altro esempio significativo è la piattaforma di apprendimento OWASP -
Open Web Application Security Project2 che offre risorse educative e stru-
menti per migliorare la sicurezza delle applicazioni web. Inoltre, OWASP fornisce
esercitazioni pratiche, esempi di codice sicuro e linee guida aggiornate su come af-
frontare le vulnerabilità di sicurezza più comuni identificate nella classifica OWASP
Top Ten3.

Analisi e test del codice
L’analisi e il test del codice sono processi che utilizzano una combinazione di tecniche
avanzate per identificare potenziali difetti, errori, vulnerabilità e per migliorare la
qualità e la sicurezza del software.
Tra le tecniche più comuni vi sono l’analisi statica e dinamica del codice.
L’analisi statica esamina il codice sorgente senza eseguirlo, permettendo di in-

dividuare errori di sintassi e potenziali vulnerabilità come i side channel attack
[A.0.69], ad esempio buffer overflow [A.0.70] e heap overflow [A.0.71].
Contrariamente, l’analisi dinamica richiede l’esecuzione del software per osser-

vare il comportamento del codice in tempo reale, rilevando problemi che possono
emergere solo durante l’esecuzione, come le race conditions [A.0.72] e i problemi
di gestione della memoria.

Threat modeling e risk assessment
Il threat modeling (modellazione delle minacce) consiste nell’identificazione e
nell’analisi delle potenziali minacce [A.0.29] che possono compromettere la sicurezza
di un sistema software, attraverso la creazione di modelli che rappresentano possibili
scenari di attacco, identificando le vulnerabilità e i punti deboli del sistema.
Ad esempio, una tecnica popolare è l’approccio STRIDE (Spoofing, Tampe-

ring, Repudiation, Information disclosure, Denial of Service, Elevation of privilege)
[A.0.33], che categorizza le minacce in diverse classi per facilitare l’identificazione di
strategie per la loro mitigazione e per la contribuzione alla resilienza agli attacchi,
cioè la capacità di un sistema di resistere e recuperare rapidamente dagli attacchi
informatici.
Il risk assessment (valutazione dei rischi) è il processo di identificazione, ana-

lisi e prioritizzazione dei rischi associati alle minacce individuate. In particolare,
viene calcolata la stima della probabilità che una minaccia si concretizzi e l’impatto
potenziale che avrebbe sul sistema. La valutazione dei rischi permette di determi-
nare quali minacce richiedono azioni immediate e quali possono essere gestite con
misure di mitigazione meno urgenti.

2https://owasp.org
3https://owasp.org/www-project-top-ten

https://owasp.org
https://owasp.org/www-project-top-ten
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Ad esempio si possono usare le tecniche come l’analisi SWOT (Strengths, Wea-
knesses, Opportunities, Threats) [A.0.34] e le matrici di rischio [A.0.39] per valutare
e classificare i rischi.

1.4.2 Tecniche di software testing
Entrando nel merito del software testing, di seguito verranno presentate le tipolo-
gie di tecniche di test e verifica più comuni, ognuna delle quali ha un ruolo specifico
nel rilevare problemi che potrebbero compromettere il funzionamento del software
in ambienti reali.

Test Funzionale
Questo tipo di test è utilizzato per garantire che il software esegua le funzioni per
le quali è stato progettato. Tale test comporta l’esecuzione del software e la verifica
delle sue caratteristiche e funzionalità per assicurarsi che funzioni come previsto
[Myers et al., 2011].

Test delle prestazioni
Si utilizza per misurare la velocità, la reattività e la stabilità del software attraverso
la simulazione di scenari realistici per valutare la gestione del carico da parte e il
funzionamento in generale a seconda di diverse condizioni [Myers et al., 2011].

Test di sicurezza
Si utilizzano diversi tool per identificare vulnerabilità e debolezze nel software che
potrebbero essere sfruttate da attaccanti. Questo tipo di test implica l’uso di varie
tecniche per tentare di violare la sicurezza del software, come il penetration testing
e la scansione delle vulnerabilità [Arbaugh et al., 2000].

Verifica formale
Uso di metodi matematici o logici per dimostrare che il software si comporta come
previsto e che non contiene difetti o vulnerabilità [Clarke and Wing, 1996].

Analisi statica
Analisi del codice sorgente senza una vera e propria esecuzione del software, al fine
di identificare potenziali difetti o vulnerabilità [Spinellis, 2006].
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Analisi dinamica
Analisi del comportamento di un’applicazione software durante la sua esecuzione
per identificare difetti o vulnerabilità che potrebbero non essere evidenti nel codice
sorgente. Gli strumenti di analisi dinamica possono essere utilizzati anche per rile-
vare problemi legati a prestazioni, uso della memoria e sicurezza [Dowd et al., 2006].
Ciò è altamente significativo per i componenti frontend [A.0.24], specialmente per
quelli esposti su internet, i quali accettando input dagli utenti possono essere veicolo
di attacchi.

Penetration testing
Simulazione di attacchi informatici contro un sistema, una rete o un’applicazione,
per identificare vulnerabilità che potrebbero essere sfruttate dagli attaccanti, quali
Sql injection [A.0.73], Cross Site Scripting [A.0.74] e buffer overflow [A.0.70]
[Arbaugh et al., 2000].

1.5 Analisi statica
L’analisi statica è una tecnica di verifica del software che permette di esaminare
il codice sorgente senza una vera e propria esecuzione del software.
Essa si basa sulla costruzione di un modello matematico dell’esecuzione del pro-

gramma al fine di analizzare alcune proprietà del software in modo rapido ed estensi-
vo [Clarke et al., 2004]. Infatti un vantaggio di questa tecnica è proprio la velocità,
tuttavia, a causa della mancata esecuzione del programma con dati reali, l’analisi
statica potrebbe non rivelare problemi specifici legati a certi input oppure a confi-
gurazioni a runtime [Chess and West, 2007].

Tra le principali tipologie di analisi statica figurano:

1.5.1 Esecuzione simbolica
Si eseguono simbolicamente i programmi su input simbolici anziché concreti, per-
mettendo di esplorare molti più percorsi di esecuzione rispetto ai test tradizionali,
rilevando bug nascosti che potrebbero non emergere durante una normale esecuzione
del programma [Cadar and Sen, 2013].
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1.5.2 Model checking
Verifica delle proprietà di sicurezza e di correttezza di un modello di programma
utilizzando tecniche di esplorazione dello spazio degli stati [A.0.66]. È particolar-
mente utile per sistemi concorrenti [A.0.67], dove i metodi tradizionali di testing
potrebbero non coprire tutti gli scenari di esecuzione [Clarke and Schlingloff, 2008].

1.5.3 Analisi del flusso di dati
Identifica potenziali problemi come race conditions [A.0.72], variabili non inizializ-
zate e accessi a memoria non validi analizzando come i dati si muovono attraverso
il software. Questa analisi aiuta a garantire che il flusso di controllo e il flusso di
dati nel programma non causino errori di esecuzione [Sadowski et al., 2018].



Capitolo 2

Metodologia

A causa di un’insufficiente applicazione delle tradizionali metodologie di analisi di
sicurezza nelle architetture a microservizi [A.0.1], è sorta l’esigenza di una metodolo-
gia analitica che possa mitigare i rischi in contesti di elevata complessità e diversità
tecnologica.
La metodologia proposta si prefigge di fornire un quadro sistematico e stratifica-

to per l’analisi di sicurezza, che sia in grado di adattarsi e reagire dinamicamente alle
specificità di ciascun componente del sistema, garantendo una continua copertura
di sicurezza comprensiva e dettagliata per una generica architettura a microservizi.

Questo capitolo è suddiviso in quattro parti.
La prima parte confronta le caratteristiche di sicurezza dei software monolitici e

dei microservizi, sottolineando la necessità di un’analisi dettagliata e specifica per
ogni microservizio a causa delle differenti tecnologie e interazioni tra i servizi.
La seconda parte espone le limitazioni dei tool di sicurezza esistenti, esplicando

le motivazioni che hanno condotto alla sviluppo della metodologia proposta.
La terza parte descrive l’approccio metodologico adottato per l’analisi di sicu-

rezza nelle architetture a microservizi.
La quarta parte si concentra sulle principali tipologie di vulnerabilità individua-

bili nel codice sorgente, nelle immagini Docker e nei dispositivi hardware.

In particolare, nella sezione 2.3 sono descritte le fasi della metodologia proposta,
partendo dalla definizione dei requisiti di sicurezza [A.0.35] e della gap analysis
[A.0.31], passando poi dalla threat analysis [A.0.32] per identificare le potenziali
minacce, proseguendo con l’analisi della sicurezza per strati per esaminare
ogni componente in dettaglio, fino alla generazione di un report di aggregazione che
sintetizza i risultati delle valutazioni di sicurezza e concludendo con il monitoraggio
continuo per verifiche costanti di sicurezza nel tempo.

12



CAPITOLO 2. METODOLOGIA 13

2.1 Analisi di sicurezza di software monolitici e
microservizi

I software monolitici sono caratterizzati da un’unica base di codice sorgente e da
un’architettura centralizzata, infatti i tool di analisi di sicurezza possono esaminare
l’intero sistema come un’unica entità poiché le librerie e i moduli sono utilizzati
trasversalmente nell’applicazione e ciò facilita l’identificazione di dipendenze interne
e di vulnerabilità trasversali.
Tuttavia, questa architettura può rendere arduo l’aggiornamento e la manuten-

zione in quanto qualsiasi modifica potrebbe potenzialmente compromettere l’intera
applicazione, aumentando il costo di riparazione degli errori a seconda della fase del
ciclo di vita dello sviluppo del software.

Contrariamente, i software che adottano un’architettura a microservizi of-
frono una modularità che permette ad ogni componente (o servizio) di operare in
modo indipendente, offrendo vantaggi significativi in termini di scalabilità [A.0.14],
riuso [A.0.13], resilienza del sistema [A.0.15] e costi di manutenzione [A.0.17].
Tuttavia, questa frammentazione del codice comporta complessità aggiuntive

nell’analisi delle vulnerabilità, in quanto ogni microservizio potrebbe utilizzare stack
tecnologici [A.0.22] diversi, avere le proprie dipendenze ed essere soggetto a specifi-
che configurazioni di sicurezza.
Pertanto le analisi di sicurezza dovrebbero estendersi non solo ai singoli servizi

ma anche alle interazioni tra essi. Inoltre, al fine di facilitare l’isolamento e la
scalabilità, i microservizi sono spesso eseguiti in container [A.0.5] e ciò introduce la
necessità di gestire la sicurezza anche a livello di container, eventuali orchestratori
[A.0.6], configurazioni di rete e politiche di sicurezza.

2.2 Limitazioni dei tool di analisi di sicurezza
I tool di analisi di sicurezza esistenti, pur essendo efficaci nei loro specifici ambiti
di applicazione, presentano diversi limiti quando si tratta di operare su un insieme
diversificato di componenti tecnologici, perché nonostante siano progettati per uno o
più specifici campi di applicazione (ad esempio diversi linguaggi di programmazione,
immagini Docker [A.0.8], servizi cloud [A.0.3]), non è possibile sviluppare infinite
integrazioni verso altri tool di sicurezza, al fine di avere un risultato aggregato.
A tal proposito esistono degli orchestratori di tool di sicurezza, i quali

in base ai tool di sicurezza supportati, permettono la loro esecuzione e conversio-
ne dell’output prodotto in un formato omogeneo per l’intero sistema; quest’ultimo
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aggregabile con altri output al fine di fornire un quadro complessivo dell’intera in-
frastruttura da analizzare.

Tra gli orchestratori di tool di sicurezza esistenti più noti figura DefectDojo1,
una piattaforma open-source di aggregazione dei risultati di sicurezza, che tuttavia
è in grado di analizzare solo codice sorgente, scritto in diversi linguaggi, esclu-
dendo qualsiasi altro componente non legato al codice sorgente, come immagini di
container, servizi cloud o dispositivi.
Un’alternativa a DefectDojo è Kondukto2, una piattaforma commerciale che

supporta l’analisi di vari target tra cui codice sorgente in diversi linguaggi, servizi
cloud, immagini di container, infrastruttura di rete e dispositivi mobile. Tuttavia, il
costo di questa piattaforma è nell’ordine delle decine di migliaia di dollari all’anno,
il quale rappresenta una barriera economica significativa per molte aziende.

2.3 Metodologia per l’analisi di sicurezza in ar-
chitetture a microservizi complesse

Alla luce delle limitazioni evidenziate, è emersa la necessità di sviluppare una nuo-
va metodologia che sia in grado di superare i vincoli dei tool di sicurezza e degli
orchestratori esistenti.
La metodologia proposta, si configura come una soluzione di software assuran-

ce continua progettata per infrastrutture a microservizi e che integra generici tool
di sicurezza, eseguibili su generici componenti hardware/software, in un processo
unificato e sistematico.
Questa metodologia assicura che la sicurezza sia mantenuta attraverso tutte

le fasi del ciclo di vita del software, dalla progettazione iniziale fino al monito-
raggio continuo post-rilascio, effettuando una valutazione dei rischi in base alle
vulnerabilità individuate.

2.3.1 Definizione dei requisiti di sicurezza e gap analysis
La prima fase consiste nella mappatura dei microservizi e quindi nell’identificazione
di tutti i componenti dell’architettura, dei loro linguaggi di programmazione, delle
loro dipendenze nonché degli ambienti di esecuzione (ad esempio i container).
Successivamente, vengono determinati i requisiti di sicurezza in base a una

combinazione di linee guida normative (ad esempio GDPR [A.0.53] e PCI-DSS
1https://defectdojo.org
2https://kondukto.io

https://defectdojo.org
https://kondukto.io
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[A.0.54]) e best practice del settore (ad esempio OWASP Top Ten per le applicazio-
ni web), e specifiche esigenze aziendali dettate dalla consultazione con gli stakehol-
der chiave [A.0.36] (ad esempio i responsabili della sicurezza e team di sviluppo),
per comprendere le priorità di sicurezza ed eventuali vincoli implementativi legati
all’operatività dei microservizi.
Una volta definiti i requisiti di sicurezza, viene effettuata una gap analysis

[A.0.31] per identificare le discrepanze tra l’attuale stato di sicurezza dell’architettura
a microservizi e i requisiti desiderati.

2.3.2 Threat analysis
In questa fase viene condotta una threat analysis [A.0.32] per identificare poten-
ziali minacce (o threats) che possono compromettere la sicurezza dei microservizi
identificati.
Successivamente, vengono illustrati esempi concreti che mostrano come tali mi-

nacce possano manifestarsi, collegandoli a specifiche Common Weakness Enumera-
tion (CWE) [A.0.43], che forniscono una tassonomia standardizzata delle debolezze
che possono essere sfruttate dagli attaccanti.

2.3.3 Analisi della sicurezza per strati
In questa fase, per ogni strato tecnologico, si applica una procedura di analisi della
sicurezza ottimizzata per quel tipo specifico di tecnologia affinché l’analisi possa cat-
turare una più ampia gamma di vulnerabilità possibile, espresse attraverso metriche
quali CVE [A.0.44], CWE, severity [A.0.46] e score [A.0.47].
L’approccio per strati garantisce che ogni componente dell’architettura a mi-

croservizi sia esaminato in dettaglio, tenendo conto delle specifiche tecniche e delle
peculiarità di ciascun ambiente.

2.3.4 Report di aggregazione
In questa fase viene generato un report nel quale vengono aggregati i risultati di
tutte le valutazioni di sicurezza in base alle CWE e threats individuati nella threat
analysis e nel quale vengono calcolati diversi livelli di rischio [A.0.37] in base alle
CWE ed ai threats, al fine di presentare lo stato di sicurezza globale.

2.3.5 Monitoraggio continuo
Nell’ultima fase vengono impostate tecniche di monitoraggio continuo che effettuano
verifiche continue di sicurezza al susseguirsi delle versioni dei microservizi.
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2.4 Principali tipologie di vulnerabilità individua-
bili nel codice sorgente

In questa sezione vengono esplorate le vulnerabilità più rilevanti che possono essere
individuate nel codice sorgente delle applicazioni software. Saranno analizzate di-
verse categorie di vulnerabilità, tra cui injection, memory corruption, remote code
execution, broken authentication, sensitive data exposure, broken access control, pas-
sword hardcoded, race conditions, insufficient input validation, elevation of privilege,
Denial of Service e path traversal.

2.4.1 Injection
Le vulnerabilità di tipo injection (ad esempio SQL injection [A.0.73] e Cross-Site
Scripting (XSS) [A.0.74]), sono causate dall’incorporazione diretta di input malevoli
all’interno delle query oppure all’interno dei comandi eseguiti da un sistema.
Questi attacchi sfruttano la mancanza di un’adeguata sanificazione degli in-

put per eseguire comandi arbitrari sul server, manipolare il database o alterare la
presentazione dei contenuti web.
Ad esempio gli attacchi di tipo SQL injection possono permettere agli aggressori

di bypassare autenticazioni, accedere a dati sensibili, modificare o distruggere dati,
mentre gli attacchi XSS possono modificare il comportamento delle pagine web per
eseguire script malevoli oppure rubare cookies e sessioni utente.

2.4.2 Memory corruption
Le vulnerabilità di tipo memory corruption (ad esempio buffer overflow [A.0.70]
e heap overflow [A.0.71]), si verificano quando c’è un errore nella gestione della
memoria durante l’esecuzione di un programma.
In particolare, questi errori permettono agli attaccanti di modificare il norma-

le flusso del programma sovrascrivendo la memoria con dati arbitrari, il che può
portare a crash del sistema, undefined behaviour [A.0.68] o, nei casi più gravi,
all’esecuzione di codice arbitrario sotto il controllo dell’attaccante.

2.4.3 Memory leaks
Questa categoria riguarda perdite di memoria non volute a causa della mancata
deallocazione di una parte della stessa quando non più necessaria. Ciò può causare
crash del sistema oppure degradazioni delle prestazioni, le quali sono sfruttabili per
attacchi DoS [A.0.76].
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Ad esempio, nei dispositivi hardware, i memory leak sono spesso associati a
driver mal progettati oppure a bug nel firmware, che gestiscono in modo inefficace
l’allocazione e la deallocazione della memoria.

2.4.4 Remote code execution
Le vulnerabilità di tipo remote code execution permettono l’esecuzione di codice
arbitrario da parte di un attaccante su un sistema remoto tramite l’injection di un
payload malevolo [A.0.65], il quale a causa di una mancata sanificazione dell’input
o di un difetto nelle procedure di deserializzazione [A.0.97], viene interpretato ed
eseguito dal sistema vulnerabile.
L’injection può partire, ad esempio, da web form che interagiscono con il backend

[A.0.23] di un’applicazione in maniera non sicura, oppure sfruttando vulnerabilità
nei protocolli di rete che non implementano adeguati controlli di autenticazione.

2.4.5 Broken authentication
Questo tipo di vulnerabilità sono causate da carenze nei meccanismi di autenticazio-
ne e gestione delle sessioni, le quali permettono agli aggressori di impersonare altri
utenti o di bypassare il processo di autenticazione. Ciò può essere dovuto ad una
mancanza di adeguati controlli di sicurezza oppure ad una mancata invalidazione
della sessione dopo il logout.

2.4.6 Sensitive data exposure
L’esposizione di dati sensibili [A.0.48] avviene quando informazioni riservate
quali password o dati personali vengono memorizzati, processati o trasmessi senza
adeguate misure di sicurezza (ad esempio la crittografia).
Un esempio è la conservazione di dati sensibili in chiaro e non in un formato

criptato nei database e/o nei log, oppure l’uso di protocolli non sicuri per la tra-
smissione dei dati, e in generale di un’inadeguata protezione dei dati sensibili contro
l’accesso da parte di utenti non autorizzati.

2.4.7 Broken access control
Vulnerabilità di questo tipo si presentano quando sono presenti dei difetti nella
verifica dei permessi di lettura/scrittura degli utenti/ruoli e dei sistemi di restrizione,
consentendo ad utenti non autorizzati di accedere a funzionalità oppure a dati che
dovrebbero essere, invece, nascosti.
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2.4.8 Password hardcoded
Con l’espressione password hardcoded si intende una pratica di sviluppo che im-
plica l’incorporazione diretta di credenziali all’interno del codice sorgente, esponen-
do le applicazioni a rischi di sicurezza significativi, perché le credenziali diventano
facilmente accessibili agli attaccanti che riescono a visualizzare il codice sorgente in
maniera lecita o illecita, oppure tramite tecniche di reverse engineering [A.0.57].

2.4.9 Race conditions
Le race conditions si verificano quando il comportamento di un’applicazione è
influenzato dall’ordine non deterministico in cui le operazioni concorrenti vengono
eseguite.
Questi difetti possono essere sfruttati dagli attaccanti per condurre attacchi di

tipo time-of-check to time-of-use in cui l’attaccante interviene tra la verifica e l’uso
di una risorsa causando comportamenti imprevisti e potenzialmente dannosi.

2.4.10 Insufficient input validation
Questa vulnerabilità si verifica quando un’applicazione non filtra adeguatamente
l’input fornito dall’utente, consentendo l’inserimento di payload malevoli [A.0.65]
per eseguire attacchi di tipo injection [2.4.1] o in generale altri attacchi basati
sull’inserimento di script o comandi dannosi all’interno di campi di input.

2.4.11 Elevation of privilege
L’elevation of privilege si verifica quando un attaccante acquisisce privilegi supe-
riori a quelli assegnati al fine di eseguire comandi o accedere a dati che dovrebbero
essere al di fuori del suo ambito di autorizzazione.
Ciò può avvenire, ad esempio, attraverso l’uso di diverse tecniche che sfruttano

vulnerabilità di mancata validazione dell’input [2.4.10].

2.4.12 Denial of Service
Gli attacchi di tipo Denial of Service (DoS) mirano a rendere una risorsa di
sistema non disponibile attraverso un sovraccaricamento del sistema con una grande
mole di richieste.
Le vulnerabilità che permettono tali attacchi possono essere causate, ad esempio,

da mancate verifiche sui permessi/privilegi prima dell’esecuzione di task computa-
zionalmente costosi, da mancate impostazioni di tecniche di throttling per limitare
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il numero di richieste effettuabili in un determinato periodo di tempo oppure da un
mancato load balacing per distribuire il carico di lavoro su più server.

2.4.13 Path traversal
Le vulnerabilità di tipo path traversal si verificano quando un’applicazione non
valida correttamente gli input relativi ai percorsi dei file o delle directory, consen-
tendo agli attaccanti di accedere a file o directory fuori dalla radice prevista del web
server.

2.5 Principali tipologie di vulnerabilità individua-
bili in immagini Docker

In questa sezione vengono descritte le vulnerabilità più significative che possono
essere rilevate all’interno delle immagini Docker, come vulnerabilità di sistema ope-
rativo e dipendenze, configurazioni non sicure, esposizione di dati sensibili e rischi
introdotti durante il processo di costruzione delle immagini stesse.

2.5.1 Vulnerabilità di sistema operativo e dipendenze
Le immagini Docker possono includere vulnerabilità ereditate dal sistema operativo
di base e dalle dipendenze delle applicazioni.
Ad esempio le immagini di sistema operativo come Debian3, Ubuntu4 o CentOS5,

di versioni obsolete, possono contenere vulnerabilità note che possono essere sfrut-
tate da aggressori per ottenere accesso non autorizzato o eseguire codice malevolo
all’interno dei container.

2.5.2 Configurazioni non sicure
Configurazioni di default non sicure nelle immagini Docker, come l’esposizione di
porte non necessarie, l’uso di credenziali predefinite, e configurazioni inadeguate
delle reti interne, possono esporre le applicazioni ad attacchi di diverso tipo.

3https://debian.org
4https://ubuntu.com
5https://centos.org

https://debian.org
https://ubuntu.com
https://centos.org
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2.5.3 Esposizione di dati sensibili
Immagini Docker mal configurate possono involontariamente includere dati sensi-
bili nei layer dell’immagine stessa, come chiavi API, password o token di accesso
e ciò può portare a gravi violazioni se gli attaccanti riescono ad accedere a tali
informazioni.

2.5.4 Inserimento di vulnerabilità durante la costruzione
Durante il processo di costruzione delle immagini Docker possono essere introdotte
vulnerabilità a causa di script di costruzione non sicuri oppure a causa dell’uso di
Dockerfile [A.0.9] non revisionati.

2.6 Principali tipologie di vulnerabilità individua-
bili in dispositivi hardware

In questa sezione, vengono esaminate le vulnerabilità critiche che possono essere in-
dividuate nei dispositivi hardware, mettendo in evidenza i rischi per la sicurezza che
queste vulnerabilità comportano. Saranno esplorate categorie come vulnerabilità nel
boot loader, configurazioni non sicure del kernel, processi con privilegi eccessivi, at-
tacchi Man-in-the-Middle (MITM), exploitation di bug nel firmware, configurazioni
predefinite insicure ed errori nei meccanismi di protezione.

2.6.1 Boot loader insicuro
Le vulnerabilità nel boot loader [A.0.87] permettono agli attaccanti di bypas-
sare i meccanismi di sicurezza all’avvio con attacchi di tipo rootkit o bootkit che
modificano il processo di avvio del sistema operativo per eseguire codice malevolo
prima che il sistema operativo stesso abbia la possibilità di attivare le proprie misure
di sicurezza [Kleissner, 2009].
Questi attacchi sfruttano spesso vulnerabilità note nell’Unified Extensible Firm-

ware Interface (UEFI6), l’interfaccia firmware standardizzata che ha sostituito il vec-
chio Basic Input/Output System (BIOS) nei computer moderni [Sabt et al., 2015].

2.6.2 Software non utilizzati
La presenza di pacchetti software non essenziali alle operazioni ordinarie, magari
abilitati all’avvio, aumentano la superficie di attacco del dispositivo perché possono

6https://uefi.org

https://uefi.org
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introdurre potenziali vulnerabilità oppure interferire con altri programmi, causando
conflitti o rallentamenti.

2.6.3 Configurazioni non sicure del kernel
Il kernel è il nucleo centrale del sistema operativo ed ha il controllo completo delle
risorse del sistema, quindi, qualsiasi vulnerabilità a questo livello può portare a
conseguenze devastanti.
In particolare, alcune configurazioni non sicure possono esporre il sistema a

exploit che consentono la privilege escalation [A.0.75].
Un esempio di configurazione non sicura è l’abilitazione delle funzionalità di

debugging nel kernel, le quali dovrebbero essere disattivate in un ambiente di pro-
duzione dato che possono essere sfruttate per eseguire codice arbitrario con privilegi
di root [Hallinan, 2006].

2.6.4 Processi con privilegi eccessivi
L’esecuzione di un software, contenente vulnerabilità, con privilegi superiori a quelli
necessari, aumenta il rischio di attacchi di tipo privilege escalation, permettendo ad
un attaccante di eseguire azioni malevoli a livello di sistema.

2.6.5 Man-in-the-Middle
Gli attacchi di tipoMan-in-the-Middle (MITM) permettono ad un aggressore di
intercettare e manipolare le comunicazioni tra due dispositivi senza che le vittime
ne siano consapevoli, compromettendo la riservatezza e l’integrità dei dati.
Un esempio di attacco MITM nei dispositivi hardware IoT riguarda l’inter-

cettazione di comunicazioni non cifrate di protocolli wireless, ad esempio quelle
Bluetooth.

2.6.6 Exploitation di bug nel firmware
Il firmware è il software integrato nei dispositivi per gestire le operazioni a basso li-
vello e le vulnerabilità nel firmware possono essere sfruttate per ottenere accesso non
autorizzato, eseguire codice arbitrario o compromettere l’integrità del dispositivo.
Tali attacchi sono particolarmente pericolosi perché il firmware opera a un li-

vello di privilegio elevato e spesso al di fuori del controllo dell’utente finale, inoltre
le tecniche di persistenza del firmware permettono agli aggressori di mantenere il
controllo del dispositivo anche dopo un riavvio o una reinstallazione del sistema
operativo.
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2.6.7 Configurazioni predefinite insicure
Le configurazioni predefinite insicure riguardano le impostazioni di default che
non sono ottimizzate per la sicurezza, come credenziali di default (reperibili anche
su internet), porte di rete aperte non necessarie (rilevabili con strumenti di port
scanning) e servizi non essenziali attivi.
Tali impostazioni possono lasciare i dispositivi esposti a una serie di attacchi,

compromettendo la sicurezza dell’intero sistema.

2.6.8 Errori nei meccanismi di protezione
Errori nella configurazione di funzionalità di sicurezza, come configurazioni errate di
AppArmor7 o SELinux8, possono compromettere i controlli di accesso obbligatori
per il kernel Linux.

7https://apparmor.net
8http://selinuxproject.org

https://apparmor.net
http://selinuxproject.org


Capitolo 3

Tecnologie utilizzate

Questo capitolo fornisce una panoramica delle principali tecnologie impiegate nel
progetto, descrivendo il ruolo e le funzionalità di ciascuna nel contesto dell’analisi
di sicurezza delle architetture a microservizi.

La sezione 3.1 introduceMoonCloud, una piattaforma per la valutazione con-
tinua di conformità e di assurance [1.4] per applicazioni e infrastrutture ICT, de-
scrivendo la metodologia adottata dalla piattaforma, le sue feature principali e il
funzionamento generale.
Infine, la sezione 3.2 esamina i tool di analisi statica [1.4.2] utilizzati, qualiGosec

[3.2.1], Bandit [3.2.1], Trivy [3.2.2] e Lynis [3.2.3], descrivendone il funzionamento
e l’applicazione nel contesto del progetto.

3.1 MoonCloud
MoonCloud1 è una piattaforma per la valutazione continua di conformità e di
assurance [1.4] per applicazioni e infrastrutture ICT, nata per rispondere al crescente
bisogno di analizzare in maniera trasparente gli strati sempre più nascosti delle
infrastrutture ICT moderne [MoonCloud, 2024].

3.1.1 Metodologia
L’implementazione della piattaforma si basa sull’attività di ricerca ”A continuous
certification methodology for devops” [Anisetti et al., 2019].
In particolare, vista la bassa trasparenza e incertezza degli ambienti cloud è

stata proposta una metodologia di certificazione continua che permette di valutare
1https://moon-cloud.eu
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le proprietà non funzionali come la sicurezza, la privacy e l’affidabilità in maniera
continua, cioè in ogni fase del ciclo di vita del software [Anisetti et al., 2019].
Il suo funzionamento consiste nell’integrazione di un processo di verifica conti-

nua nel processo di sviluppo DevOps, sincronizzando la verifica del software con la
Continuous Integration (CI) e il Continuous Deployment (CD) assicurando, quindi,
una valutazione costante e aggiornata del sistema software [Anisetti et al., 2023].

3.1.2 Feature
MoonCloud offre una valutazione continua della conformità e dell’assurance in di-
versi ambiti. Ad esempio per le infrastutture ICT moderne che fanno un uso mas-
siccio di microservizi, fornisce controlli specifici per cloud pubblici come AWS2 e
Azure3, controlli ad-hoc per infrastrutture on-premises [A.0.4], regole di conformità
per standard rilevanti (ad esempio Agid4 e GDPR [A.0.53]) e monitoraggio delle
minacce basato su controlli di vulnerability assessment e penetration testing [1.4.2].
Per le applicazioni basate su artificial intelligence e machine learning, Moon-

Cloud offre controlli specifici che monitorano i modelli in tempo reale garantiscono
la conformità dei processi secondo standard come CapAI [A.0.55] e ALTAI [A.0.56].
Infine, nell’ambito dell’Edge Cloud Continuum [A.0.81], la piattaforma permette

la valutazione su larga scala di infrastrutture composte da dispositivi e domini
eterogenei e controlli di sicurezza per dispositivi IoT, reti 5G e nodi edge.

3.1.3 Funzionamento
La piattaformaMoonCloud è composta da un cluster Kubernetes [A.0.7] che gestisce
diverse probe, cioè controlli di sicurezza che vengono lanciati contro un target.
In particolare, una generica probe è una classe Python5 che eredita da una clas-

se base, chiamata MoonCloud driver, metodi per costruire i controlli di sicurez-
za secondo una precisa struttura, definita appunto dal driver, e che produce tre
risultati:

• Integer result: un numero intero per indicare se la probe ha riscontrato o
meno discordanze con le proprietà che deve asserire oppure per indicare che
si è verificato un errore specifico;

• Pretty result: una breve stringa che descrive dettagliatamente il motivo per
cui la probe ha restituito tale numero intero;

2https://aws.amazon.com
3https://azure.microsoft.com
4https://agid.gov.it
5https://python.org

https://aws.amazon.com
https://azure.microsoft.com
https://agid.gov.it
https://python.org
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• Extradata: un insieme arbitrario di valori contenenti le evidenze raccolte
dalla probe.

Attraverso una dashboard dedicata è possibile, definire uno o più target ai quali
associare una o più probe sviluppate e visualizzare i risultati al termine delle valu-
tazioni.

Fisicamente la probe è un container Docker che viene eseguito a seguito del suo
inserimento in una catena di microservizi.
In particolare, l’input viene iniettato dal Kubernetes manager [A.0.7] e l’output

viene passato all’evidence writer, un componente che si occupa di scrivere i risultati
della probe sul database in ordine temporale.
A livello implementativo la probe è una macchina a stati finiti con due catene

definite come segue:

• La main chain (o forward chain) è quella che viene eseguita normalmente
se non si verificano errori;

• La backward chain (o rollback chain) è quella che viene eseguita se si
verifica un errore e che si occupa di compiere azioni di rollback rispetto alle
azioni di scrittura/modifica compiute sul target.
Da notare che se questa catena è definita deve esistere una corrispondenza tra
uno stato nella catena principale e uno nella catena di rollback.

Figura 1: Architettura probe MoonCloud
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In particolare, ogni catena è composta da più stati (metodi Python) che rappre-
sentano i passi del controllo di sicurezza. Tipicamente, ci sono almeno i seguenti
tre stati:

1. Fase iniziale che riceve l’input, ne verifica la correttezza ed eventualmente
compie alcune azioni per l’inizializzazione della probe (ad esempio settaggio
di alcuni attributi per i passaggi successivi);

2. Fase che esegue l’azione effettiva per la quale la probe è stata progettata, ad
esempio l’esecuzione di un tool esterno;

3. Fase che valuta i risultati ottenuti e restituisce l’output secondo il formato già
descritto [3.1.3].

3.2 Tool di analisi statica utilizzati
Questa sezione esamina diversi strumenti di analisi statica utilizzati per identificare
e mitigare vulnerabilità di sicurezza nel software e nei sistemi, sottolineando le
metodologie e le capacità specifiche di ciascuno strumento.

3.2.1 Gosec e Bandit
Gosec6 e Bandit7 sono due strumenti di analisi statica open source [A.0.19] proget-
tati per identificare potenziali vulnerabilità di sicurezza, rispettivamente, nel codice
Go e nel codice Python.
Entrambi operano allo stesso modo, cioè analizzano il codice sorgente utilizzan-

do l’Abstract Syntax Tree (AST) del linguaggio, la struttura sintattica del codice in
una forma ad albero, dove ogni nodo corrisponde a una costruzione sintattica del
linguaggio, come espressioni, dichiarazioni e blocchi di codice.

In particolare, durante il processo di analisi, vengono eseguite le seguenti ope-
razioni:

1. Parsing del codice sorgente: lettura del codice sorgente e costruzione
dell’AST corrispondente;

2. Applicazione delle regole di sicurezza: lo strumento applica un insieme
predefinito di regole di sicurezza all’AST. Queste regole sono progettate per
identificare costrutti potenzialmente pericolosi o vulnerabili nel codice;

6https://github.com/securego/gosec
7https://pypi.org/project/bandit

https://github.com/securego/gosec
https://pypi.org/project/bandit
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3. Segnalazione delle vulnerabilità: se viene rilevata una vulnerabilità, viene
generato un report dettagliato che descrive il problema, posizione nel codice
sorgente, Common Vulnerabilities and Exposures (CVE) [A.0.44] e score.

3.2.2 Trivy
Trivy8 è uno strumento per l’analisi di sicurezza progettato per identificare vulne-
rabilità note, basandosi sul database di vulnerabilità CVE, in diverse tipologie di
target, tra cui i pacchetti software e loro dipendenze, immagini Docker e file system.

Immagini Docker
Per l’analisi dei layer delle immagini Docker, Trivy prende in considerazione i file e
i metadati delle stesse al fine di individuare:

• Vulnerabilità nei pacchetti software installati e nelle dipendenze;

• Configurazioni errate, convertendo l’immagine in un Dockerfile [A.0.9] per
individuare impostazioni di configurazione che potrebbero rappresentare un
rischio per la sicurezza come permessi di file non sicuri e impostazioni di rete
inadeguate;

• Secrets, convertendo la configurazione dell’immagine in un file JSON [A.0.26]
per individuare, ad esempio, variabili d’ambiente che potrebbero contenere
credenziali, chiavi API o altre informazioni sensibili.

File system
Trivy esegue scansioni su generici file system a partire da una directory specifica
oppure dalla loro radice, al fine di analizzare interi sistemi operativi, individuando:

• Vulnerabilità in pacchetti software basandosi su file che descrivono dipen-
denze, ad esempio, go.mod, package-lock.json e Gemfile.lock;

• Configurazioni errate [3.2.2];

• Secrets [3.2.2].
8https://trivy.dev

https://trivy.dev
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3.2.3 Lynis
Lynis9 è uno strumento open source [A.0.19] di audit e hardening, progettato per
sistemi Unix-like, il quale consente di identificare vulnerabilità e fornire raccoman-
dazioni per risolvere le problematiche di sicurezza.

Le scansioni di Lynis sono modulari, cioè vengono testati solo i componenti
che vengono individuati nel sistema, eseguendo scansioni su misura a seconda del
sistema specifico.
In particolare, Lynis effettua una serie di test di sicurezza che coprono varie aree,

ad esempio i servizi di autenticazione, firewall, servizi di rete e controlli di sistema.
Inoltre analizza configurazioni di sistema e software per identificare potenziali

configurazioni errate o vulnerabili, ad esempio impostazioni del kernel, permessi dei
file, patch di sicurezza mancanti, configurazioni di sicurezza di software come SSH
[A.0.91] e altri software.

Al termine della scansione, Lynis produce un report dettagliato che elenca
gli eventuali punti deboli trovati e nel quale compare una metrica denominata
hardening index score.
Questa metrica consente di valutare il livello di hardening di un sistema Unix-like

che può variare tra 0 e 100, dove un punteggio più alto indica un livello di sicurezza
migliore.

9https://cisofy.com/lynis

https://cisofy.com/lynis


Capitolo 4

Implementazione

Questo capitolo descrive l’applicazione pratica della metodologia di analisi di si-
curezza precedentemente delineata, presentando i risultati ottenuti e le soluzioni
implementate per garantire la sicurezza delle architetture a microservizi.

La sezione 4.1 presenta lo scenario di applicazione, descrivendo UrbanIoT
[4.1.2], un software di telegestione di impianti di illuminazione pubblica e smart
city basato su Mainflux [4.1.1], un framework open source per lo sviluppo di
soluzioni IoT. Lo scenario di applicazione è stato oggetto della sperimentazione
dell’implementazione della metodologia, tuttavia per quanto riguarda il software
UrbanIoT, si precisa che ne verrà presentata una versione semplificata per questioni
di riservatezza.
La sezione 4.2 fornisce un confronto e le motivazioni dietro la scelta dei tool di

analisi di sicurezza adottati, evidenziando i criteri di selezione e le ragioni per cui
ciascuno strumento è stato preferito rispetto ad altri strumenti alternativi.
La sezione 4.3 è dedicata alla definizione dei requisiti di sicurezza e alla gap

analysis per i componenti Mainflux e UrbanIoT, analizzando le caratteristiche di
sicurezza dichiarate e identificando eventuali lacune da colmare per raggiungere un
livello di sicurezza ottimale.
Successivamente, nella sezione 4.4, relativa alla threat analysis, vengono iden-

tificate e valutate le potenziali minacce che possono compromettere la sicurezza
dei sistemi, utilizzando la tassonomia ufficiale di ENISA [A.0.51] e del progetto
H2020-CONCORDIA [A.0.50] per classificare i vari tipi di minacce e debolezze.
La sezione 4.5, dedicata all’analisi della sicurezza per strati, descrive l’applicazio-

ne di procedure di analisi specifiche per ciascun livello tecnologico dell’architettura
a microservizi, utilizzando tool di analisi statica come Gosec, Trivy, Bandit e Lynis
per valutare la sicurezza del codice sorgente, delle immagini Docker e del dispositivo
edge.

29
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La sezione 4.6 presenta un’aggregazione e un’analisi complessiva dei risultati
delle varie valutazioni di sicurezza, calcolando livelli di rischio complessivi e specifici
per ogni CWE e threat identificato e fornendo una visione d’insieme della sicurezza
del sistema.
Infine, la sezione 4.7, relativa al monitoraggio continuo, illustra come le probe

sviluppate possano essere integrate nelle pipeline DevOps [1.1] attraverso le API di
MoonCloud, al fine di avere una valutazione costante e aggiornata della sicurezza
dei microservizi durante l’intero ciclo di vita del software.

4.1 Scenario
4.1.1 Mainflux
Mainflux1 è un framework open source scritto in Go2, estendibile e integrabile con
applicazioni di terze parti, che fornisce una serie di funzionalità fondamentali per lo
sviluppo di soluzioni IoT attraverso un insieme di microservizi containerizzati con
Docker, al fine di garantire alte prestazioni, scalabilità e fault tolerance [A.0.16].
La piattaforma Mainflux funge, quindi, da infrastruttura software e middleware

con le seguenti feature principali:

• Gestione dei dispositivi: registrazione, autenticazione e monitoraggio, at-
traverso la gestione remota dei dispositivi IoT ;

• Raccolta dei dati: raccolta e archiviazione dei dati strutturati e non strut-
turati provenienti dai dispositivi IoT, in maniera scalabile e con il supporto di
meccanismi di prioritizzazione dei dati per flussi improvvisi di grandi quantità
di dati;

• Analisi dei dati: analisi dei dati in tempo reale e visualizzazione in una
dashboard dedicata di insight significativi come report, grafici, mappe con
la posizione dei dispositivi. Supporto di algoritmi di machine learning per
l’estrazione automatica di informazioni rilevanti;

• Sicurezza dei dati: integrità dei dati sensibili garantita attraverso un insie-
me di misure di sicurezza avanzate quali, autenticazione basata su ruoli con
chiavi API [A.0.28] e token JWT [A.0.27] con scope di accesso personalizzabili,
crittografia dei dati in transito attraverso mutua autenticazione TLS [A.0.88],
per dispositivi e servizi, tramite certificati X.509 [A.0.89], e un reverse proxy
Nginx [4.1.1] per garantire la sicurezza e il bilanciamento del carico.

1https://mainflux.com
2https://go.dev

https://mainflux.com
https://go.dev
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Nella figura 2 è rappresentata l’architettura e i componenti principali del fra-
mework, i quali saranno successivamente descritti:

Figura 2: Architettura e componenti principali del framework Mainflux

Users
Gestisce gli utenti e l’autenticazione sulla piattaforma.

Auth
Funzionalità di autenticazione tramite API per gestire le chiavi di autenticazione e
di amministrare things e users.

Things
Gestisce le things, i channels e le politiche di accesso.

• Una thing rappresenta un dispositivo connesso a Mainflux e che usa la piat-
taforma per scambiare messaggi con altre things.

• Un channel rappresenta un canale di comunicazione, raggruppa i messaggi che
possono essere consumati da tutte le things collegate al canale.

Protocol adapters
Gestisce le things, i channels e le politiche di accesso della piattaforma con diverse
interfacce a seconda dei protocolli di comunicazione implementati.
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NATS3

Sistema di messaggistica scalabile open source per lo scambio di messaggi all’interno
dei Mainflux.

Jaeger4

Sistema open source per il monitoraggio delle transazioni distribuite in architetture a
microservizi per tracciare e analizzare il flusso delle richieste attraverso i componenti
di un’applicazione.

Nginx5

Proxy che funge da interfaccia di ingresso ed uscita. Riceve le richieste da parte dei
client esponendo delle API ed inoltra le richieste ai singoli componenti.

PostgreSQL6

Database relazionale per archiviare metadati (users, things, channels e rispettivi
token di autenticazione).

Redis7

Data store in memoria utilizzato come database e cache.

InfluxDB8

Database open source progettato per gestire in maniera ottimizzata dati come serie
temporali, metriche e dati di eventi, tipici dei sistemi IoT.

Grafana9

Piattaforma open source per il monitoraggio e l’osservazione dei dati al fine di visua-
lizzare e analizzare metriche tramite dashboard grafiche interattive che si integrano
con varie fonti di dati come InfluxDB.

3https://nats.io
4https://jaegertracing.io
5https://nginx.org
6https://postgresql.org
7https://redis.io
8https://influxdata.com
9https://grafana.com

https://nats.io
https://jaegertracing.io
https://nginx.org
https://postgresql.org
https://redis.io
https://influxdata.com
https://grafana.com


CAPITOLO 4. IMPLEMENTAZIONE 33

4.1.2 UrbanIoT
UrbanIoT è il nome utilizzato in questa tesi per riferirsi ad un reale software di
telegestione degli impianti di illuminazione pubblica e delle smart city, che tutta-
via per ragioni di riservatezza industriale, non è possibile descrivere con ulteriori
dettagli.
Questo software è scritto in Go ed è basato sul frameworkMainflux, infatti come

descritto in figura 3, UrbanIoT è costituito da 4 strati progettuali:

Mainflux Framework

Backend

Dispositivo edge

Frontend

Software
A
rchitecturalSecurity

A
nalysis

Figura 3: Livelli dell’architettura di UrbanIoT
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Figura 4: Architettura e componenti principali di UrbanIoT

Backend
Nell’architettura di UrbanIoT mostrata nella figura 4 sono presenti, oltre ai com-
ponenti proprietari anche i componenti chiave di Mainflux, i quali sono componenti
generici molto usati in tantissimi contesti ed hanno una ottima solidità e team di
sviluppo consolidati.
Per tali motivi sono anche stati individuati come servizi su cui basare anche lo

sviluppo dei componenti proprietari di UrbanIoT in completa sinergia quindi con il
framework.
Tale scelta ha ottimi impatti sul design della soluzione nella sua interezza e for-

nisce una minore esposizione a problematiche di sicurezza data la miglior possibilità
di controllare la superficie di attacco.

Da notare che l’architettura di UrbanIoT è un’architettura complessa, dato che
è composta da diversi microservizi per il backend, diverse tipologie di database, un
microservizio per il frontend e un dispositivo edge.
A tal proposito risulta altrettanto complesso effettuare analisi di sicurezza con

i tool esistenti, per i motivi già descritti nella sezione 2.2, pertanto questa architet-
tura è stata oggetto di sperimentazione per la metodologia proposta [2.3].
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Frontend
Il frontend di UrbanIoT è costituito da una singola applicazione, sviluppata uti-
lizzando il framework AngularJS [A.0.25], la quale opera come un microservizio
indipendente che non è direttamente integrato nel progetto UrbanIoT, bensì ci si
interfaccia attraverso le API disponibili per ottenere dati in lettura e inviare co-
mandi al sistema per eseguire varie operazioni.

Da notare che, a differenza dei componenti precedentemente descritti, la dash-
board di UrbanIoT, essendo basata su AngularJS, presenta un numero significati-
vamente maggiore di dipendenze esterne e ciò introduce maggiori potenziali rischi
di sicurezza, poiché ogni dipendenza esterna può rappresentare una possibile fonte
di vulnerabilità gravi.

Dispositivo edge
Il dispositivo edge di UrbanIoT è un dispositivo Raspberry Pi [A.0.86] basato su
Linux Raspbian con architettura ARM [A.0.85].
La funzione del dispositivo edge è quella di utilizzare un collegamento dati IP

verso il proprio server di controllo centrale per ricevere i parametri di funzionamento
con i quali comandare il driver dell’apparecchio di illuminazione e fornire i dati delle
misure effettuate in campo.

4.2 Confronto e motivazioni sulle scelte dei tool
Questa sezione confronta i diversi strumenti di analisi di sicurezza e fornisce le
motivazioni dietro le scelte effettuate per ciascun contesto di analisi di sicurezza.

4.2.1 Frontend - AngularJS
Durante la scelta dei tool, è stata riscontrata una mancanza di strumenti dedicati
esclusivamente all’analisi delle vulnerabilità per progetti AngularJS, a differenza
di Go per il quale esiste uno strumento specifico come Gosec.
A tal proposito, è stato utilizzato Trivy nella modalità file system per eseguire

la scansione della cartella del progetto AngularJS, analizzando il file package.json e
le relative dipendenze.
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4.2.2 Backend - Go
Per l’analisi statica del codice Go sono stati confrontati i seguenti tool: golint10,
govet11, errcheck12 e Gosec13.
E’ stato scelto di implementare nei controlli di sicurezzaGosec perché per quan-

to riguarda i primi tre è stato riscontrato che sono strumenti adatti per la rilevazione
di errori di sintassi, problemi di stile e bug nel codice e non offrono la stessa profon-
dità nell’individuazione di vulnerabilità di sicurezza di Gosec, dato che nonostante
siano utili per migliorare la qualità del codice, mancano delle capacità di associare
i problemi rilevati con specifiche vulnerabilità di sicurezza e CVE.

4.2.3 Script Python
Per l’analisi statica del codice Python sono stati presi in considerazione i seguenti
tool: Pylint14, MyPy15, Bandit16, Safety17, Snyk18 e SonarQube19.
E’ stato scelto di implementare nei controlli di sicurezza Bandit perché per

quanto riguarda i primi due è stato riscontrato lo stesso problema visto per Gosec
[4.2.2].
Inoltre, sebbene Safety, Snyk e SonarQube analizzino i progetti e le loro dipen-

denze per trovare vulnerabilità di sicurezza note, parte delle funzionalità sono a
pagamento, essendo piattaforme SaaS [A.0.20] e solo in parte open source.

4.2.4 Immagini Docker
Per le valutazioni di sicurezza delle immagini Docker, sono stati confrontati Grype20
e Trivy e dopo un’analisi approfondita, la scelta è ricaduta su Trivy per diverse
ragioni chiave che lo rendono preferibile rispetto a Grype:

• Versatilità: sebbene entrambi gli strumenti siano in grado di individuare
un numero comparabile di CVE, Trivy offre una maggiore versatilità perché,
come già detto, non si limita a scansionare solo le immagini Docker, ma può

10https://golangci-lint.run
11https://pkg.go.dev/cmd/vet
12https://github.com/kisielk/errcheck
13https://golangci-lint.run
14https://pypi.org/project/pylint
15https://mypy-lang.org
16https://github.com/PyCQA/bandit
17https://safetycli.com
18https://snyk.io
19https://sonarsource.com
20https://github.com/anchore/grype
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essere utilizzato anche per analizzare i file system locali, infatti è stato anche
per altri target;

• Community: Trivy beneficia di una community più grande e attiva, il che
significa un accesso più rapido a risorse, tutorial e risoluzioni di problemi;

• Sistemi operativi supportati: Trivy supporta un numero di sistemi ope-
rativi, usati come immagini Docker di base, maggiore e ciò aumenta il grado
di compatibilità con immagini Docker eterogenee;

• Maggiori sorgenti di vulnerabilità: Trivy si appoggia ad un numero mag-
giore di database di vulnerabilità, permettendo una copertura delle vulnera-
bilità più completa e aggiornata.

4.2.5 Dispositivo edge - Lynis
Per l’hardening del dispositivo edge sono stati presi in considerazione i seguenti tool:
Lynis, OpenVAS21 e Nessus22.

Nessus è un software proprietario disponibile solo come parte di un’offerta
commerciale, quindi è stato scartato a priori.
E’ stato scelto Lynis perché rispetto ad OpenVAS, offre una maggiore copertura

degli sistemi operativi supportati e una profondità di audit superiore, inoltre a
differenza di OpenVAS, che scansiona il target tramite connessione di rete, Lynis
opera direttamente sull’host esclusivamente in modalità lettura e ciò riduce il rischio
di compromissione dei processi aziendali in produzione.
Infine, operando direttamente sull’host, i log di connessione sono privi di tenta-

tivi di connessione e richieste errate che potrebbero allertare sistemi di difesa quali
IPS [A.0.94] e IDS [A.0.93].

4.3 Definizione dei requisiti di sicurezza e gap
analysis

Questa sezione esamina i requisiti di sicurezza definiti per Mainflux, analizzando
le caratteristiche dichiarate e confrontandole con le pratiche effettivamente imple-
mentate. Successivamente, viene presentata una una gap analysis per identificare
eventuali lacune di sicurezza e potenziali rischi associati ai requisiti dichiarati.
21https://openvas.org
22https://tenable.com/products/nessus

https://openvas.org
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Da notare che anche per UrbanIoT si è proceduto ad identificare i requisiti di
sicurezza e condurre la gap analysis, tuttavia per i motivi già esplicati [4] non è
possibile includere i risultati in questa tesi.

4.3.1 Requisiti di sicurezza
Di seguito vengono analizzate le caratteristiche di sicurezza dichiarate da Mainflux
ed il loro rapporto con i componenti, inclusi i componenti esterni infrastrutturali
utilizzati, definiti nella figura 2.
In particolare Mainflux dichiara le seguenti caratteristiche:

Rx1 Autenticazione e autorizzazione attraverso il controllo degli acces-
si sulle API : garantite dai componenti auth e users con autenticazione
attraverso JWT token [A.0.27];

Rx2 Confidenzialità del canale: garantita con certificati X.509 [A.0.89]. Inol-
tre tutti i componenti consentono l’abilitazione di mutual TLS authentica-
tion [A.0.88] per crittografare la comunicazione fra i singoli componenti e con
l’esterno;

Rx3 Load balancing [A.0.11]: Nginx reverse proxy [4.1.1] per il load-balancing
posizionato come gateway davanti a tutti i componenti esposti con il client;

Rx4 Unico accesso al perimetro di sicurezza: Nginx reverse proxy per la
sicurezza e terminazione delle connessioni TLS e DTLS.

4.3.2 Gap analysis
In questa sezione si identificano eventuali gap di sicurezza di Mainflux, distinguendo
tra warning tecnici sui requisiti e gap teorici.
Il colore indica la severità del gap [bassa, media, alta].

Rx1 La libreria utilizzata per gestire i token JWT è dgrijalva/jwt-go 23 e il suo
utilizzo deve essere monitorato, in quanto il repository che ospita il codice della
versione utilizzata da Mainflux non è attualmente mantenuto. La libreria di
riferimento dovrebbe essere: golang-jwt/jwt 24.

Rx2 La versione del protocollo crittografico utilizzata è l’ultima disponibile ovvero
la 1.3 però è da controllare nel tempo.

23https://github.com/dgrijalva/jwt-go
24https://github.com/golang-jwt/jwt
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Rx3, Rx4 Sebbene Nginx non sia dell’ultima versione disponibile al momento del-
la scrittura (1.25.5), la versione utilizzata di default da Mainflux (1.23.3) è
conforme alle richieste dei requisito.

Gm1 Confidentiality a livello di log.
Nella fase di registrazione, i log non intaccano la privacy dell’utente sebbene
per motivi tecnici, lo username sia registrato insieme al messaggio che ne
attesta l’avvenuta registrazione.

Gm2 Confidentiality a livello di dato salvato.
Mainflux non esprime alcun requisito in merito, demandando all’applicazio-
ne specifica. Ad ogni modo si segnala come Mainflux includa servizi per il
salvataggio dei dati (PostgreSQL, InfluxDB, Redis) e che questi non siano
configurati di default per garantire la confidenzialità.

Gm3 Auditability attraverso l’uso dei log per audit di sicurezza.
Al momento sembra non siano espressivi a sufficienza pertanto si rende ne-
cessario un’analisi protratta nel tempo e più approfondita.

Gm4 Availability a livello di reverse proxy.
La configurazione di Nginx non prevede meccanismi di high availability per-
tanto potrebbe essere un single point of failure e un possibile target di dDOS
[A.0.76].

4.4 Threat analysis
Questa sezione espone la threat analysis per Mainflux e UrbanIoT, utilizzando come
riferimento la tassonomia di ENISA [A.0.51] e il framework definito dal progetto
H2020-CONCORDIA [A.0.50].
Le minacce sono categorizzate in base alle aree di interesse, cioè quelle relative

ai servizi di sicurezza forniti da Mainflux per UrbanIoT e quelle dirette a Mainflux
stesso.

4.4.1 Mainflux
Le famiglie di threats individuate per Mainflux, sono:

• Interception and unauthorized acquisition: a livello di comunicazione
tra componenti base e servizi Mainflux.
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– Networking: eavesdropping [A.0.77], interception [A.0.78], hijacking
[A.0.79]
∗ CWE-200 - Information exposure: questa debolezza si verifica
quando informazioni sensibili vengono esposte a entità che non sono
autorizzate ad accedervi.

∗ CWE-300 - Channel and path vulnerabilities: riguarda le vul-
nerabilità nei canali di comunicazione che possono essere sfruttate
per intercettare o dirottare i dati.

– System: acquisizione non autorizzata di informazioni (data breach)
∗ CWE-284 - Improper access control: questa debolezza si verifi-
ca quando un sistema non applica correttamente le politiche di con-
trollo degli accessi, permettendo a utenti non autorizzati di accedere
a risorse riservate.

• Nefarious activity/abuse a livello di servizi Mainflux.

– Networking: remote activities (execution)
∗ CWE-94 - Improper control of generation of code: questa
debolezza si verifica quando un sistema permette l’inserimento e
l’esecuzione di codice non autorizzato.

– System: identity theft or identity fraud, Denial of Service, malicious
code/software/activity, code execution and injection.
∗ Identity theft or identity fraud

· CWE-522 - Insufficiently protected credentials: questa
debolezza si verifica quando le credenziali non sono adeguata-
mente protette, consentendo a malintenzionati di rubarle o uti-
lizzarle in modo fraudolento.

∗ Denial of Service
· CWE-400 - Uncontrolled resource consumption: questa
debolezza si verifica quando un sistema non riesce a controllare
il consumo delle risorse, rendendosi vulnerabile agli attacchi di
Denial of Service.

∗ Malicious code/software/activity
· CWE-94 - Improper control of generation of code (code
injection): [4.4.1]

∗ Code execution and injection
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· CWE-20 - Improper input validation: questa debolezza si
verifica quando un sistema non valida correttamente l’input, per-
mettendo l’inserimento di dati malformati che possono causare
comportamenti imprevisti o dannosi.

· CWE-77 - Improper neutralization of special elements
used in a command (command injection): questa debolezza
si verifica quando un sistema non neutralizza correttamente ele-
menti speciali utilizzati in un comando, permettendo l’iniezione
di comandi non autorizzati.

4.4.2 UrbanIoT
Di seguito vengono elencate le famiglie di threats per UrbanIoT e il dispositivo edge,
le quali sono associate a diversi livelli: IoT, system, network, data, application e
user.

• Intentional physical damage:

– IoT: modifica del dispositivo edge
∗ CWE-1252 - Improperly controlled modification of object
prototype attributes: questa debolezza si verifica quando gli attri-
buti di un oggetto possono essere modificati in modo non controllato,
permettendo alterazioni non autorizzate.

∗ CWE-200 - Information exposure: [4.4.1]

• Unintentional damage/loss of information or IT assets:

– System: progettazione inadeguata
∗ CWE-250 - Execution with unnecessary privileges: questa
debolezza si verifica quando il software viene eseguito con privilegi
superiori a quelli necessari.

∗ CWE-710 - Improper adherence to coding standards: que-
sta debolezza si verifica quando il codice sorgente non aderisce agli
standard di codifica appropriati, portando a potenziali vulnerabilità.

– Data: perdita o condivisione di informazioni a causa di errori umani
∗ CWE-199 - Information management errors: questa debolezza
si verifica quando si verificano errori nella gestione delle informazioni,
portando alla perdita o alla divulgazione involontaria di dati.

– Network: gestione impropria di dispositivi e sistemi
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∗ CWE-277 - Insecure inherited permissions: questa debolezza
si verifica quando i permessi ereditati non sono sicuri, portando a
configurazioni di sicurezza errate.

– Application: errore di configurazione della sicurezza
∗ CWE-16 - Configuration: questa debolezza si verifica quando le
configurazioni di sicurezza non sono corrette, permettendo potenziali
exploit.

• Poisoning:

– IoT: alterazione del dispositivo edge
∗ CWE-494 - Download of code without integrity check: que-
sta debolezza si verifica quando il codice viene scaricato senza un
controllo di integrità, permettendo alterazioni non autorizzate.

– Data: manomissione dei dati
∗ CWE-502 - Deserialization of untrusted data: questa debo-
lezza si verifica quando i dati vengono deserializzati [A.0.97] senza
essere adeguatamente verificati, permettendo la manipolazione dei
dati.

• Failures and malfunctions

– IoT: a livello del dispositivo edge
∗ CWE-385 - Covert timing channel: questa debolezza si verifica
quando un canale temporale nascosto permette la trasmissione non
autorizzata di informazioni.

– Network: a livello di networking
∗ CWE-118 - Improper access of indexable resource: questa
debolezza si verifica quando una risorsa indicizzabile viene acquisita
in modo non appropriato, portando a malfunzionamenti.

• Interception and unauthorized acquisition:

– IoT: accesso al dispositivo edge di UrbanIoT
∗ CWE-294 - Authentication bypass by capture-replay: questa
debolezza si verifica quando un attaccante può bypassare l’autenti-
cazione catturando e riutilizzando credenziali valide.

– Networking: eavesdropping [A.0.77], interception [A.0.78], hijacking
[A.0.79]
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∗ CWE-300 - Channel and path vulnerabilities: [4.4.1]
– Data: acquisizione di informazioni non autorizzata (data breach)

∗ CWE-284 - Improper access control: [4.4.1]
– Application: esposizione di dati sensibili

∗ CWE-200 - Information exposure: [4.4.1]

• Nefarious activity and abuse:

– System: identity theft or identity fraud, Denial of Service, malicious
code/software/activity, code execution and injection (unsecured APIs),
abuse of information leakage
∗ CWE-522 - Insufficiently protected credentials: [4.4.1]
∗ CWE-400 - Uncontrolled resource consumption: [4.4.1]
∗ CWE-94 - Improper control of generation of code (code
injection): [4.4.1]

∗ CWE-20 - Improper input validation: [4.4.1]
∗ CWE-77 - Improper neutralization of special elements used
in a command (command injection): [4.4.1]

∗ CWE-359 - Exposure of private information (privacy vio-
lation): questa debolezza si verifica quando informazioni private
vengono esposte in modo non autorizzato.

– Application: autenticazione e controllo degli accessi compromessi
∗ CWE-287 - Improper authentication: questa debolezza si ve-
rifica quando un sistema non autentica correttamente gli utenti,
permettendo l’accesso non autorizzato.

∗ CWE-285 - Improper authorization: questa debolezza si ve-
rifica quando un sistema non autorizza correttamente gli utenti,
permettendo l’accesso a risorse senza i dovuti permessi.

• Organizational threats:

– IoT: malicious operator
∗ CWE-1242 - Use of a risky cryptographic algorithm: questa
debolezza si verifica quando vengono utilizzati algoritmi crittografici
rischiosi, permettendo a operatori malintenzionati di comprometter-
li.

– Application: malicious insider
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∗ CWE-706 - Use of incorrectly-resolved name or reference:
questa debolezza si verifica quando vengono utilizzati nomi o riferi-
menti risolti in modo errato, permettendo a insider malintenzionati
di sfruttare la vulnerabilità.

– User: skill shortage
∗ CWE-399 - Resource management errors: questa debolezza si
verifica quando si verificano errori nella gestione delle risorse, spesso
dovuti a una carenza di competenze adeguate.

4.5 Analisi della sicurezza per strati
Come definito nella metodologia 2.3.3, per ogni strato tecnologico di UrbanIoT si
applica una procedura di analisi della sicurezza ottimizzata per quel tipo specifico
di tecnologia.
A tal proposito sono state sviluppate apposite probe MoonCloud [3.1] per ogni

tool già presentato nella sezione 3.2, le quali saranno descritte secondo il loro flusso
di esecuzione.

4.5.1 Gosec
La probe clona un repository git [A.0.21] pubblico o privato (utilizzando un token
Oauth [A.0.90]) contenente il codice sorgente in Go da analizzare, in questo caso il
codice sorgente di backend di UrbanIoT e il codice sorgente di Mainflux.
Successivamente lancia il tool Gosec su tale target, escludendo la cartella ”test”

in quanto spesso contiene codice che può essere percepito da Gosec come fonte di
potenziali vulnerabilità e ciò può portare a un numero elevato di falsi positivi, ri-
ducendo l’efficacia dell’analisi.

Gosec genera un report JSON contenente:

• Golang errors: riporta errori di compilazione o problemi che Gosec ha in-
contrato durante l’analisi del codice. Questi errori suggeriscono, ad esempio,
che ci sono riferimenti a variabili o funzioni non definite nel codice sorgente
e questo potrebbe essere dovuto a dipendenze mancanti oppure ad errori di
sintassi;

• Issues: elenco di problemi di sicurezza rilevati, ognuno composto da diversi
campi tra cui:

– file: il percorso del file in cui è stata rilevata la vulnerabilità;
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– severity: livello di gravità della vulnerabilità (CRITICAL, HIGH, ME-
DIUM, LOW );

– confidence: livello di confidenza che Gosec ha nella precisione della
segnalazione (HIGH, MEDIUM, LOW );

– cwe: identificatore CWE [A.0.43] della vulnerabilità;
– details: descrizione dettagliata del problema di sicurezza rilevato;
– line and column: numero di riga e colonna nel file in cui è stata rilevata
la vulnerabilità.

• Stats: statistiche sull’analisi eseguita, come il numero di file analizzati, il
numero di linee di codice esaminate e il tempo totale impiegato per l’analisi.

Tuttavia, il file JSON generato contiene anche dati che non si riferiscono diret-
tamente a vulnerabilità (Golang errors e stats), inoltre la sezione issues contiene
dati duplicati, ad esempio una stessa CWE con stessa severity e confidence può
ripetersi più volte a causa di diverse occorrenze nell’intero progetto.
A tal proposito è stato realizzato uno script Python che prende in input un

report JSON di Gosec e ne restituisce un altro più corto e con dati più significativi.
In particolare, vengono rimosse le sezioni Golang errors e stats e per ogni CWE

vengono raggruppate tutte le occorrenze che si presentano nei vari file.

Il risultato finale è un file JSON composto, ad esempio, da queste occorrenze:

{
”Issues”: [

{
”CWE”: ”79”,
”Targets”: {

”file1.go”: [{”line”: 10, ”column”: 5}],
”file2.go”: [{”line”: 20, ”column”: 15}]

},
”severity”: ”HIGH”,
”confidence”: ”MEDIUM”,
”details”: ”XSS vulnerability”

},
{

”CWE”: ”89”,
”Targets”: {

”file1.go”: [{”line”: 30, ”column”: 25}]
},
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”severity”: ”CRITICAL”,
”confidence”: ”HIGH”,
”details”: ”SQL injection vulnerability”

}
]

}

Infine, la determinazione del successo o fallimento della probe è basata sulla
valutazione di una soglia del numero di occorrenze di una determinata severity.
Ad esempio, se al termine della valutazione è presente un numero di occorrenze

con severity MEDIUM maggiore di una determinata soglia, allora essa fallisce e
nella dashboard di MoonCloud sarà segnalato con il colore rosso, viceversa con il
colore verde.

4.5.2 Trivy per le immagini Docker
La probe scarica un file Docker compose [A.0.10], in questo caso quello di UrbanIoT,
ed eventualmente un file contenente i valori delle variabili dichiarate nel file Docker
compose al fine di effettuare opportune sostituzioni.
Successivamente la probe estrae dal file Docker compose l’elenco delle immagini

dichiarate nei service di tale file e procede a lanciare il tool Trivy su ogni immagine,
il quale si occuperà di eseguire una scansione focalizzata esclusivamente sulla ricerca
di vulnerabilità note nei pacchetti software e nelle dipendenze.

In particolare, per ogni immagine, Trivy genera un report JSON contenente:

• Metadata: informazioni sul contesto e configurazione della scansione esegui-
ta;

• Vulnerabilities: elenco di problemi di sicurezza rilevati, ognuno composto
da diversi campi tra cui:

– VulnerabilityID: identificatore CVE [A.0.44] della vulnerabilità;
– Title: titolo descrittivo della vulnerabilità;
– Description: descrizione dettagliata della vulnerabilità;
– severity: livello di gravità della vulnerabilità (CRITICAL, HIGH, ME-
DIUM, LOW, UNKNOWN, NONE);

– cwe: identificatore CWE [A.0.43] della vulnerabilità;
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– VendorSeverity: severità della vulnerabilità determinata da diverse
fonti ognuna delle quali può valutare la severità in base ai propri criteri
e metodi di valutazione;

– CVSS: punteggi e vettori Common Vulnerability Scoring System (CVSS)
V2 e V3 [A.0.45] forniti da diverse fonti.

Tuttavia, la sezione Vulnerabilities contiene anche metadati superflui per le
valutazioni di sicurezza.
A tal proposito è stato realizzato uno script Python che prende in input un

report JSON di Trivy e ne restituisce un altro più corto e con dati più significativi.
Inoltre per evitare CVE duplicate per diverse immagini, lo script raggruppa più

target per una determinata CVE.

Il risultato finale è un file JSON composto, ad esempio, da queste occorrenze:

{
”CVE-2021-33194”: {

”Targets”: [
”auth:0.12.1”,
”influxdb-writer:0.12.1”,
”http:0.12.1”

],
”Details”: {

”Title”: ”golang: x/net/html: infinite loop in ParseFragment”,
”Description”: ”...”,
”Severity”: ”HIGH”,
”CWE”: [

”CWE-835”
],
”V2Score”: 5.0,
”V3Score”: 7.5

}
},
...

}

Infine, come già definito per altre probe, la determinazione del successo o falli-
mento della probe è basata sulla valutazione di una soglia del numero di occorrenze
di una determinata severity [4.5.1].
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4.5.3 Trivy per il codice sorgente
La probe clona un repository git pubblico o privato (utilizzando un token Oauth
[A.0.90]) contenente il codice sorgente in un linguaggio supportato da Trivy, in
questo caso il codice sorgente di backend (Go) e frontend (AngularJS) di UrbanIoT
e il codice sorgente di Mainflux (Go).
Successivamente lancia il tool Trivy su tale target e, allo stesso modo di Trivy

per le immagini docker [4.5.2], viene generato un output JSON analogo e vengono
effettuate le stesse valutazioni per determinare il successo o il fallimento della probe.

4.5.4 Trivy per il dispositivo edge
Emulazione del dispositivo
Per l’effettuazione delle analisi di sicurezza, non potendo operare sul dispositivo
edge in maniera fisica oppure tramite connessione, è stato utilizzato l’emulatore
open source QEMU25, il quale consente di eseguire sistemi operativi compilati per
un’architettura hardware (ad esempio x86 e ARM) su un’altra architettura.
A tal proposito è stato utilizzato per emulare il processore ARM e le periferiche

associate, nella sua versione per Docker in modo da avere i seguenti vantaggi:

• Isolamento: i container Docker sono isolati dal sistema host, permettendo
di evitare conflitti di dipendenze;

• Portabilità: i container possono essere eseguiti su qualsiasi sistema che
supporta Docker;

• Automatizzazione: è possibile definire l’intero ambiente di emulazione in
un Dockerfile, rendendo semplice la sua riproducibilità.

Tuttavia prima di procedere con l’emulazione vera e propria sono state effettuate
alcune modifiche al sistema operativo da emulare al fine di creare un nuovo utente
con privilegi di amministratore (necessari per alcune fasi dell’analisi) e di modificare
alcune impostazioni esistenti che avrebbero interferito con l’emulazione.

In particolare, con uno script Bash, l’immagine del sistema operativo del Rasp-
berry Pi è stata montata su una directory temporanea (/mnt) e sono state eseguite
le seguenti operazioni:

• Modifica al file /mnt/etc/ld.so.preload per evitare il caricamento delle librerie
condivise specificate in esso, le quali avrebbero interferito con il processo di
emulazione;

25https://qemu.org

https://qemu.org
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• Creazione di un nuovo utente nel file /mnt/etc/passwd e concessione dei
privilegi di amministratore nel file /mnt/etc/sudoers;

• Modifica della modalità di funzionamento del file system nel file /mnt/etc/f-
stab da lettura a scrittura;

• Sostituzione del file /mnt/etc/ssh/sshd_config con una configurazione che
consente l’accesso SSH tramite meccanismo chiave pubblica/privata;

• Creazione del file /mnt/home/.ssh/authorized_keys contenente una chiave
pubblica corrispondente alla chiave privata usata per la successiva connessione
SSH.

Successivamente, per l’emulazione con QEMU, è stato configurato un Docker-
file che partendo da un’immagine di base di Ubuntu 20.04 installa alcuni pacchet-
ti necessari: qemu-system-aarch6426 per l’emulazione dell’architettura ARM, fdi-
sk27, wget28, mtools29, e xz-utils30 necessari per gestire e manipolare l’immagine del
sistema operativo Raspberry Pi.
In seguito, l’immagine del Raspberry Pi è stata copiata nella directory di lavo-

ro del container e ridimensionata alla potenza di due successiva, garantendo una
dimensione ottimale per l’emulazione con QEMU.
Poi, utilizzando fdisk e mtools, il Dockerfile ha identificato la partizione FAT32

[A.0.82] nell’immagine e configurato l’ambiente per estrarre i file necessari.
Sono stati, quindi, estratti il device tree blob [A.0.83] e l’immagine del kernel

(kernel8.img) necessari per l’avvio del sistema emulato.
Infine, per consentire l’accesso remoto al sistema emulato è stato configurato

SSH specificando il forwarding della porta per consentire l’accesso SSH dal sistema
host al sistema emulato.

Da notare che il Raspberry Pi 3B+31, utilizzato dal dispositivo edge, è dotato
di 1 GB di RAM e un processore quad-core ARM Cortex-A5332, pertanto al fine
di ottenere un’emulazione del sistema più fedele possibile all’hardware reale ed evi-
tare undefined behaviors, QEMU impone tali limitazioni anche nella configurazione
per l’emulazione. Tali limitazioni comportano, tuttavia, rallentamenti generali non
trascurabili durante l’esecuzione dei tool di sicurezza nel sistema emulato.
26https://qemu.org/docs/master/system/target-arm.html
27https://www.gnu.org/software/fdisk
28https://gnu.org/software/wget
29https://gnu.org/software/mtools
30https://tukaani.org/xz
31https://raspberrypi.com/products/raspberry-pi-3-model-b
32https://arm.com/products/silicon-ip-cpu/cortex-a/cortex-a53

https://qemu.org/docs/master/system/target-arm.html
https://www.gnu.org/software/fdisk
https://gnu.org/software/wget
https://gnu.org/software/mtools
https://tukaani.org/xz
https://raspberrypi.com/products/raspberry-pi-3-model-b
https://arm.com/products/silicon-ip-cpu/cortex-a/cortex-a53
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Esecuzione della probe
La probe si connette via SSH al dispositivo edge emulato conQEMU, scarica una ver-
sione di Trivy, specificata da utente, procede con l’installazione con il tool dpkg33 e
lo esegue nella modalità rootfs34 specificando come path di inizio la radice dell’intero
sistema operativo (/).
Successivamente, la probe estrae dal sistema il report JSON generato e, come

già descritto, utilizza lo script Python per generare un report finale più significativo,
sul quale vengono effettuate le valutazioni già descritte per determinare il successo
o il fallimento della probe.

Da notare che a seguito di diverse esecuzioni sperimentali e considerate le già
descritte limitazioni dell’emulazione, sono stati esclusi alcune directory e file con
determinate estensioni per evitare un tempo di esecuzione totale nell’ordine delle ore,
non di certo compatibile con i tempi accettabili per verifiche di sicurezza continue.
In particolare le directory e i file esclusi riguardano:

• La directory /mnt/ramdisk;

• I file con le estensioni jar, war, par, ear.

4.5.5 Lynis per il dispositivo edge
La probe si connette via SSH al dispositivo edge emulato con QEMU [4.5.4], scarica
una versione di Lynis, specificata da utente, e lo esegue con l’opzione nocolors al fine
di salvare l’output senza la formattazione dei colori per evitare un inutile overhead.
Da notare che le opzioni di formattazione e formato dell’output di Lynis sono

disponibili solo nella versione a pagamento, pertanto è stato realizzato uno script
Python che prende in input il report in formato txt generato da Lynis e genera un
report JSON analogo contenente le informazioni già descritte [3.2.3].
Infine la probe valuta il valore hardening index con una soglia definita da utente

per determinare il successo o fallimento della stessa.
Da notare che per le limitazioni già descritte nella sezione 4.5.4, sono stati esclusi

alcuni test case:

• PKGS-7345: verifica la presenza di pacchetti non rimossi, i quali determi-
nano la presenza di file non utilizzati;

33https://wiki.debian.org/it/dpkg
34https://aquasecurity.github.io/trivy/v0.52/docs/target/rootfs/

https://wiki.debian.org/it/dpkg
https://aquasecurity.github.io/trivy/v0.52/docs/target/rootfs/
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• PKGS-7392: verifica la presenza di pacchetti software vulnerabili nel si-
stema, identificando quelli con falle di sicurezza note per le quali sono già
disponibili aggiornamenti;

• NETW-2600: verifica la configurazione di IPv6 [A.0.92] per determinare se
il protocollo è abilitato o disabilitato;

• HTTP-6708: esamina le impostazioni di configurazione di Nginx per identi-
ficare eventuali errori di configurazione o impostazioni non sicure che potreb-
bero compromettere la sicurezza del server;

• CRYP-7902: verifica la data di scadenza dei certificati SSL35 per evitare
l’uso improprio di certificati scaduti;

• KRNL-6000: confronto tra i valori correnti delle variabili di sistema e una
lista di valori considerati best practice.

4.5.6 Bandit per gli script Python
La probe clona un repository git pubblico o privato (utilizzando un token Oauth
[A.0.90]) contenente il codice sorgente in Python da analizzare, in questo caso un
repository contenente alcuni script contenuti nel dispositivo edge.
Successivamente lancia il tool Bandit su tale target, il quale genera un report

JSON contenente:

• errors: riporta errori di compilazione o problemi che Bandit ha incontrato
durante l’analisi del codice;

• metrics: distribuzione della confidence e severity sia a livello generale, che
per ogni singolo file analizzato, numero totale di linee di codice analizzate,
linee di codice ignorate e il numero di test saltati;

• results: elenco dei problemi di sicurezza rilevati, ognuno composto da diversi
campi tra cui:

– filename: il percorso del file in cui è stata rilevata la vulnerabilità;
– issue_severity: livello di gravità della vulnerabilità (CRITICAL, HI-
GH, MEDIUM, LOW );

– issue_confidence: livello di confidenza che Bandit ha nella precisione
della segnalazione (HIGH, MEDIUM, LOW );

35https://ssl.com

https://ssl.com
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– issue_cwe: identificatore CWE [A.0.43] della vulnerabilità;
– issue_text: descrizione dettagliata della vulnerabilità;
– line and column: numero di riga e colonna nel file in cui è stata rilevata
la vulnerabilità.

Tuttavia, il file JSON generato contiene anche dati che non si riferiscono diret-
tamente a vulnerabilità (errors e metrics), inoltre la sezione results può contenere
dati duplicati, ad esempio una stessa CWE con stessa confidence e severity può
ripetersi più volte a causa di diverse occorrenze nell’intero progetto.
A tal proposito è stato realizzato uno script Python, simile a quello sviluppato

per Gosec [4.5.1], che prende in input un report JSON di Bandit e ne restituisce un
altro più corto e con dati più significativi.
In particolare vengono rimosse le sezioni errors e metrics e per ogni CWE ven-

gono raggruppate tutte le occorrenze che si presentano nei vari file.

Il risultato finale è un file JSON composto, ad esempio, da queste occorrenze:

{
”Issues”: [

{
”CWE”: ”79”,
”Targets”: {

”file1.go”: [{”line”: 10, ”column”: 5}],
”file2.go”: [{”line”: 20, ”column”: 15}]

},
”severity”: ”HIGH”,
”confidence”: ”MEDIUM”,
”details”: ”XSS vulnerability”

},
{

”CWE”: ”89”,
”Targets”: {

”file1.go”: [{”line”: 30, ”column”: 25}]
},
”severity”: ”CRITICAL”,
”confidence”: ”HIGH”,
”details”: ”SQL injection vulnerability”

}
]

}
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Infine, come già definito per altre probe, la determinazione del successo o falli-
mento della probe è basata sulla valutazione di una soglia del numero di occorrenze
di una determinata severity [4.5.1].

4.6 Report di aggregazione
Ottenuti i report generati dai diversi tool su diversi target, si procede ad aggregare
le vulnerabilità individuate basandosi sui threats individuati nella threat analysis
[4.4].
A tal proposito è stato sviluppato uno script Python che si occupa di produrre

il report sull’aggregazione partendo da un unico file JSON di configurazione com-
posto da uno o più macro componenti definiti nella threat analysis (cioè Mainflux
e UrbanIoT), i percorsi nel file system dove si trovano i file di report generati dai
tool utilizzati e un elenco di threats con relative CWE.

Il report in output è suddiviso nelle seguenti sezioni:

4.6.1 Analisi complessiva delle vulnerabilità e delle minacce
• CVE e CWE univoche: numero di CVE e CWE univoche individuabili in
tutti i file di report, considerando che gli strumenti di analisi statica possono
individuare la stessa vulnerabilità più volte;

• Distribuzione delle severità: distribuzione delle severità delle vulnerabilità
individuate in cinque livelli (CRITICAL, HIGH, MEDIUM, LOW, UNKNO-
WN);

• Threat analysis: riepilogo della threat analysis con l’elenco dei threats e
CWE univoche ricercate in base a quanto definito nella threat analysis, dato
che diversi threat possono essere rappresentati da medesime CWE;

• CWE e CVE univoche individuate: elenco delle CWE univoche indivi-
duate tra quelle ricercate, suddivise per i macro componenti definiti e distri-
buzione delle CVE ad esse appartenenti in cinque livelli (CRITICAL, HIGH,
MEDIUM, LOW, UNKNOWN).

4.6.2 Livello di rischio complessivo
Definita una scala di valutazione per le severity: CRITICAL: 9, HIGH: 7, ME-
DIUM: 5, LOW: 3, UNKNOWN: 1, il livello di rischio complessivo è calcolato
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in base a tutte le vulnerabilità individuate moltiplicando i valori della scala di
valutazione per il V3Score e dividendo per rischio teorico massimo:

𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒 =

∑𝑛
𝑖=1 (𝑠𝑖 · 𝑣𝑖)

(𝑛𝑣 · 𝑠max · 𝑣max) + (𝑛𝑛𝑣 · 𝑠max · 1)
· 100 (1)

dove:

• 𝑠𝑖: punteggio di severità della vulnerabilità 𝑖;

• 𝑣𝑖: V3Score della vulnerabilità 𝑖, se presente, in quanto tale valore potrebbe
non essere registrato nel database NIST [A.0.52] oppure potrebbe non essere
supportato dallo strumento che ha effettuato l’analisi statica;

• 𝑛𝑣: numero di vulnerabilità con V3Score;

• 𝑛𝑛𝑣: numero di vulnerabilità senza V3Score;

• 𝑠max: valore massimo della scala di valutazione per le severity (9);

• 𝑣max: V3Score massimo (10).

Il rischio teorico massimo si calcola come il prodotto tra il punteggio di severità
massimo (9) e il valore V3Score massimo (10).
Tuttavia, poiché non tutte le vulnerabilità individuate dispongono di unV3Score,

il calcolo del rischio teorico massimo è stato adattato per tenere conto di questa
variazione.
Pertanto, il rischio teorico massimo è suddiviso in due componenti: una per le

vulnerabilità che hanno un V3Score, calcolata utilizzando il V3Score massimo, e
una per quelle che ne sono prive, per le quali il V3Score massimo è considerato pari
a 1.

4.6.3 Livello di rischio per ogni CWE
Il livello di rischio per ogni CWE è calcolato in maniera simile al livello di rischio
complessivo, con la differenza che il calcolo viene effettuato iterativamente per ogni
insieme di vulnerabilità delle CWE identificate e in seguito ogni valore di rischio
per CWE viene normalizzato sulla base della distribuzione delle vulnerabilità tra le
CWE identificate:

𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒_𝐶𝑊𝐸 𝑗 =

( ∑𝑛 𝑗
𝑖=1(𝑠𝑖 𝑗 ·𝑣𝑖 𝑗)

(𝑛𝑣 𝑗 ·𝑠max·𝑣max)+(𝑛𝑛𝑣 𝑗 ·𝑠max·1)

)
· 𝑛 𝑗

𝑛max
· 100 (2)

dove:
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• 𝑠𝑖 𝑗 : punteggio di severità della vulnerabilità 𝑖 appartenente alla CWE 𝑗 ;

• 𝑣𝑖 𝑗 : V3Score della vulnerabilità 𝑖 appartenente alla CWE 𝑗 , se presente;

• 𝑛𝑣 𝑗 : numero di vulnerabilità con V3Score nella CWE 𝑗 ;

• 𝑛𝑛𝑣 𝑗 : numero di vulnerabilità senza V3Score nella CWE 𝑗 ;

• 𝑛 𝑗 : numero di vulnerabilità nella CWE 𝑗 ;

• 𝑛max: numero massimo di vulnerabilità tra le CWE;

• 𝑠max: valore massimo della scala di valutazione per le severity (9);

• 𝑣max: V3Score massimo (10).

Da notare che tale normalizzazione produce un livello di rischio proporzionato al-
la quantità di vulnerabilità presenti in ciascuna CWE garantendo che il punteggio di
rischio rifletta accuratamente le severità, gli score e la frequenza delle vulnerabilità.
Ciò evita, ad esempio, che le CWE con un numero ridotto di vulnerabilità ab-

biano un rischio eccessivamente elevato rispetto alle CWE con un numero maggiore
di vulnerabilità, solo a causa della quantità numerica.

4.6.4 Livello di rischio per ogni threat
Il livello di rischio per ogni threat è calcolato in maniera simile al livello di rischio per
CWE, con la differenza che il calcolo viene effettuato iterativamente per ogni CWE
di ogni threat individuato nella threat analysis, e che la normalizzazione coinvolge
il numero massimo di vulnerabilità tra i valori delle somme delle vulnerabilità per
ogni CWE di un determinato threat:

𝑟𝑖𝑠𝑘_𝑠𝑐𝑜𝑟𝑒_𝑡ℎ𝑟𝑒𝑎𝑡𝑘 =

( ∑𝑚𝑘
𝑗=1

∑𝑛 𝑗𝑘
𝑖=1 (𝑠𝑖 𝑗𝑘 ·𝑣𝑖 𝑗𝑘)

(𝑛𝑣 𝑗𝑘 ·𝑠max·𝑣max)+(𝑛𝑛𝑣 𝑗𝑘 ·𝑠max·1)

)
· 𝑁𝑘

𝑁max
· 100 (3)

dove:

• 𝑠𝑖 𝑗 𝑘 : punteggio di severità della vulnerabilità 𝑖 appartenente alla CWE 𝑗 del
threat 𝑘;

• 𝑣𝑖 𝑗 𝑘 : V3Score della vulnerabilità 𝑖 appartenente alla CWE 𝑗 del threat 𝑘, se
presente;

• 𝑛𝑣 𝑗 𝑘 : numero di vulnerabilità con V3Score nella CWE 𝑗 del threat 𝑘;
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• 𝑛𝑛𝑣 𝑗 𝑘 : numero di vulnerabilità senza V3Score nella CWE 𝑗 del threat 𝑘;

• 𝑛 𝑗 𝑘 : numero di vulnerabilità nella CWE 𝑗 del threat 𝑘;

• 𝑚𝑘 : numero di CWE nel threat 𝑘;

• 𝑁𝑘 : somma delle vulnerabilità per tutte le CWE del threat 𝑘;

• 𝑁max: somma massima delle vulnerabilità tra tutti i threat;

• 𝑠max: valore massimo della scala di valutazione per le severity (9);

• 𝑣max: V3Score massimo (10).

4.7 Monitoraggio continuo
Le probe sviluppate possono essere facilmente integrate nella pipeline di svilup-
po di UrbanIoT sfruttando le API di MoonCloud che consentono l’invocazione di
una determinata probe e la restituzione del risultato in modalità bloccante/non
bloccante.
A seconda di tale modalità, in caso di fallimento della probe, la pipeline può stop-

parsi oppure proseguire e in ogni caso è possibile visualizzare i dettagli delle analisi
di sicurezza nella dashboard di MoonCloud, rendendo più efficace la consultazione
di report dettagliati rispetto a normali artifact di una pipeline.



Capitolo 5

Analisi dei risultati

Questo capitolo è suddiviso in cinque sezioni.
La prima sezione fornisce un riepilogo dei risultati ottenuti durante l’analisi delle

vulnerabilità, con l’obiettivo di presentare un quadro complessivo delle vulnerabilità
individuate, categorizzate per severità [A.0.46] e classi di CWE [A.0.43].
La seconda sezione si concentra sulle vulnerabilità suddivise per target specifi-

ci, elencando le vulnerabilità rilevate per ciascun target analizzato, suddivise per
severità [A.0.46] e classi di CWE [A.0.43].
La terza sezione presenta i risultati delle vulnerabilità suddivise per strumenti

di analisi, evidenziando come i diversi strumenti abbiano contribuito all’individua-
zione delle vulnerabilità, fornendo un confronto tra i risultati ottenuti dai vari tool
utilizzati.
La quarta sezione riguarda i risultati dell’aggregazione, dove vengono sintetizzate

le vulnerabilità individuate e aggregate in base alle famiglie di CWE definite nella
threat analysis [A.0.32], inoltre, viene mostrata la distribuzione delle severità delle
vulnerabilità appartenenti alle diverse famiglie di CWE.
Infine, la quinta sezione è dedicata all’analisi del rischio. Questa parte illustra

l’applicazione delle formule per il calcolo del livello di rischio complessivo e per ogni
CWE, nonché il livello di rischio per ciascuna minaccia individuata, al fine di fornire
una valutazione quantitativa del rischio associato alle vulnerabilità rilevate.

Da notare che la lista dettagliata delle vulnerabilità individuate non è voluta-
mente inclusa nell’appendice per ragioni di sicurezza e privacy.
In particolare, essendo che l’intero codice sorgente analizzato è software proprie-

tario, concesso esclusivamente per le analisi di sicurezza, anche i dettagli specifici
delle vulnerabilità rilevate non possono essere divulgati, dato che la pubblicazione di
tali informazioni potrebbe compromettere la sicurezza dei sistemi coinvolti e violare
accordi di riservatezza con i proprietari del codice.

57
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5.1 Riepilogo dei risultati individuati
A seguito dell’esecuzione delle probe sui target specificati, attraverso lo script di
aggregazione definito nell’implementazione 4.6, è stato rilevato un totale di 924
vulnerabilità univoche, cioè occorrenze univoche di vulnerabilità che possono essere
presenti in più report dei tool di sicurezza utilizzati.
Le vulnerabilità individuate appartengono, complessivamente, a 143 CWE uni-

voche, con la seguente distribuzione delle severity:

• CRITICAL: 67/924

• HIGH: 260/924

• MEDIUM: 227/924

• LOW: 360/924

• UNKNOWN: 10/924

5.2 Vulnerabilità suddivise per target
In questa sezione vengono presentati i risultati relativi al numero di vulnerabilità
individuate per ciascun target.
Le vulnerabilità sono categorizzate in base alla loro severity, distinguendo tra il

numero totale di vulnerabilità rilevate e il numero di quelle specificamente associate
alle CWE identificate nella threat analysis.

5.2.1 Immagini Docker di Mainflux
Nella Tabella 1 sono riportate le vulnerabilità individuate attraverso l’analisi delle
immagini Docker pubbliche dei componenti di Mainflux.
Questa analisi è stata condotta sulle versioni effettivamente utilizzate da Urba-

nIoT, anziché sulle ultime versioni disponibili, per garantire una maggiore accura-
tezza e rilevanza dei risultati.



CAPITOLO 5. ANALISI DEI RISULTATI 59

Severity Vulnerabilità Vulnerabilità threat analysis
Critical 1 -
High 15 6
Medium 7 4
Low - -

Unknown - -

Tabella 1: Analisi delle immagini Docker di Mainflux con Trivy

5.2.2 Immagini Docker di UrbanIoT
Nella tabella 2 sono elencate le vulnerabilità riscontrate analizzando le immagi-
ni Docker di UrbanIoT che comprendono immagini del backend e servizi base di
Mainflux usati anche dal backend.

Severity Vulnerabilità Vulnerabilità threat analysis
Critical 49 3
High 131 16
Medium 91 20
Low - -

Unknown - -

Tabella 2: Analisi delle immagini Docker di UrbanIoT con Trivy

5.2.3 Codice sorgente di Mainflux e UrbanIoT
Di seguito viene presentata l’analisi delle vulnerabilità del codice sorgente di Main-
flux e del backend e frontend di UrbanIoT.

Mainflux
Nelle tabelle 3 e 4 sono elencate le vulnerabilità del codice sorgente Go relativo ai
componenti di Mainflux delle stesse versioni usate in produzione.
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Severity Vulnerabilità Vulnerabilità threat analysis
Critical 2 -
High 24 12
Medium 31 11
Low 4 1

Unknown - -

Tabella 3: Analisi del codice sorgente di Mainflux con Trivy

Severity Vulnerabilità Vulnerabilità threat analysis
Critical - -
High 3 -
Medium 3 -
Low 1 -

Unknown - -

Tabella 4: Analisi del codice sorgente di Mainflux con Gosec

UrbanIoT - backend
Nelle tabelle 5 e 6 sono elencate le vulnerabilità del codice sorgente Go del backend
di UrbanIoT individuate, rispettivamente, da Trivy e Gosec

Severity Vulnerabilità Vulnerabilità threat analysis
Critical 2 2
High 9 8
Medium 9 8
Low 1 -

Unknown - -

Tabella 5: Analisi del codice sorgente del backend di UrbanIoT con Trivy
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Severity Vulnerabilità Vulnerabilità threat analysis
Critical - -
High 4 -
Medium 5 -
Low - -

Unknown - -

Tabella 6: Analisi del codice sorgente del backend di UrbanIoT con Gosec

UrbanIoT - frontend
Nella tabella 7 sono elencate vulnerabilità del codice sorgente AngularJS del fron-
tend di UrbanIoT.

Severity Vulnerabilità Vulnerabilità threat analysis
Critical 1 -
High 1 1
Medium - -
Low - -

Unknown - -

Tabella 7: Analisi del codice sorgente del frontend di UrbanIoT con Trivy

5.2.4 Dispositivo edge UrbanIoT
Sistema operativo
Nella tabella 8 sono elencate vulnerabilità individuate nel file system del dispositivo
edge di UrbanIoT.

Severity Vulnerabilità Vulnerabilità threat analysis
Critical 18 1
High 134 11
Medium 134 36
Low 357 19

Unknown 10 4

Tabella 8: Analisi del file system del dispositivo edge di UrbanIoT con Trivy
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Nella tabella 9 sono presenti il numero di test eseguiti e l’hardening index score
di Lynis:

Metrica Valore
Numero test eseguiti 242
Hardening index score 60

Tabella 9: Analisi del sistema operativo del dispositivo edge di UrbanIoT con Lynis

Script Python
Nella tabella 10 sono elencate vulnerabilità individuate negli script Python presenti
nel file system del dispositivo edge.

Severity Vulnerabilità Vulnerabilità threat analysis
Critical - -
High - -
Medium 1 -
Low 4 -

Unknown - -

Tabella 10: Analisi degli script Python del dispositivo edge di UrbanIoT con Bandit

5.3 Vulnerabilità suddivise per strumenti di ana-
lisi

In questa sezione vengono presentati i risultati relativi al numero di vulnerabilità,
per ogni CWE, individuate dai diversi strumenti di analisi
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5.3.1 Mainflux

CWE Trivy Go Gosec Trivy Docker Totale
CWE-20 3 - - 3
CWE-77 - - - -
CWE-94 - - - -
CWE-200 - - - -
CWE-284 - - - -
CWE-300 - - - -
CWE-400 7 - 3 10
CWE-522 - - - -

Tabella 11: Vulnerabilità CWE nei target di Mainflux suddivise per tool

5.3.2 UrbanIoT

CWE Bandit Gosec Trivy Angular Trivy Docker Trivy Go Trivy Edge Total
CWE-20 - - - 5 - 14 19
CWE-77 - - - - - 2 2
CWE-118 - 1 - - - - 1
CWE-200 - - - 8 - 26 34
CWE-284 - - - - - 3 3
CWE-285 - - - 1 - 1 2
CWE-287 - - - 4 3 9 16
CWE-300 - - - 1 - 1 2
CWE-359 - - - 1 - - 1
CWE-385 - - - 3 - - 3
CWE-399 - - - - - 1 1
CWE-400 - - 1 7 4 19 31
CWE-502 1 - - 1 2 1 5
CWE-522 - - - - - 1 1
CWE-706 - - - 1 2 - 3

Tabella 12: Vulnerabilità CWE nei target di UrbanIoT suddivise per tool

5.4 Risultati dell’aggregazione
A partire dalle 25 famiglie di CWE da ricercare, definite nella threat analysis, ne
sono state individuate complessivamente 15, di cui 7/15 riguardano Mainflux e
15/15 UrbanIoT e alle quali afferiscono, complessivamente, 97 vulnerabilità uni-
voche. Inoltre, la distribuzione delle severity delle vulnerabilità, appartenenti alle
15 famiglie di CWE individuate, è la seguente:
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• CRITICAL: 3/97

• HIGH: 25/97

• MEDIUM: 45/97

• LOW: 20/97

• UNKNOWN: 4/97

5.5 Analisi del rischio
Applicando la formula del livello di rischio complessivo [1] ai dati sperimentali, è
stato ottenuto un valore pari a 38/100.

Applicando la formula del livello di rischio per ogni CWE [2] ai dati sperimen-
tali, sono stati ottenuti i seguenti livelli di rischio:

CWE Livello di rischio (%)
CWE-400 40/100
CWE-20 32/100
CWE-287 22/100
CWE-200 15/100
CWE-502 6/100
CWE-284 4/100
CWE-706 3/100
CWE-385 3/100
CWE-118 2/100
CWE-285 2/100
CWE-77 2/100
CWE-300 1/100
CWE-399 1/100
CWE-359 0/100
CWE-522 0/100

Tabella 13: Livello di rischio per ogni CWE

Applicando la formula del livello di rischio per ogni threat [3] ai dati sperimen-
tali, sono stati ottenuti i seguenti livelli di rischio:
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Threat Livello di rischio (%)
Nefarious activity/abuse 40/100
Interception and unauthorized acquisition 8/100
Intentional physical damage 6/100
Poisoning 2/100
Organizational threats 2/100
Failures/malfunction 1/100
Unintentional damage/loss of information or IT assets 0/100

Tabella 14: Livello di rischio per ogni threat
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Conclusioni

L’obiettivo principale di questa tesi è stato sviluppare una metodologia analitica
per l’analisi di sicurezza nelle architetture a microservizi, rispondendo all’esigenza
di affrontare i rischi in contesti di elevata complessità e diversità tecnologica.
La metodologia proposta è stata progettata per fornire un quadro sistematico e

stratificato in grado di adattarsi e reagire dinamicamente alle specificità di ciascun
componente del sistema, garantendo una copertura di sicurezza comprensiva e det-
tagliata.

Lo stato dell’arte da cui è partita la ricerca ha evidenziato un’insufficiente ap-
plicazione delle tradizionali metodologie di analisi di sicurezza nelle architetture a
microservizi, dato che i tool di analisi esistenti spesso mancano di una capacità di
integrazione e di una visione globale necessaria per identificare e mitigare i rischi
che emergono dall’interazione tra i vari microservizi di architetture complesse.
Per risolvere questo problema, è stata proposta una nuova metodologia che in-

tegra strumenti di analisi continua all’interno di MoonCloud [3.1], una piattaforma
per la valutazione continua di conformità e di assurance [1.4] per applicazioni e
infrastrutture ICT, che permette di sincronizzare la verifica del software con la
Continuous Integration (CI) e il Continuous Deployment (CD), assicurando una
valutazione costante e aggiornata del sistema software.

L’implementazione della metodologia è stata illustrata attraverso l’analisi di un
caso di studio riguardante un sistema IoT complesso denominato UrbanIoT [4.1.2],
un software di telegestione degli impianti di illuminazione pubblica e delle smart
city.
In particolare, per ogni strato del sistema sono stati definiti i requisiti di sicurezza

[A.0.35], è stata effettuata una gap analysis [A.0.31], ed è stata condotta una threat
analysis dettagliata.

66
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Sono stati, successivamente, utilizzati diversi strumenti di analisi statica [1.4.2],
quali Gosec [3.2.1], Bandit [3.2.1], Trivy [3.2.2] e Lynis [3.2.3], per valutare la
sicurezza dei componenti software e hardware coinvolti.
Inoltre, sono stati sviluppati strumenti per l’aggregazione dei risultati delle ana-

lisi di sicurezza, permettendo di calcolare livelli di rischio complessivi e specifici per
ciascuna vulnerabilità identificata.

Dai risultati sperimentali ottenuti, emergono diverse osservazioni rilevanti sul-
l’efficacia della metodologia proposta.
In particolare, l’analisi delle immagini Docker diMainflux e UrbanIoT ha rileva-

to un numero significativo di vulnerabilità di elevata gravità (CRITICAL e HIGH),
evidenziando la necessità di un monitoraggio continuo e approfondito.
Ad esempio, l’analisi delle immagini Docker di UrbanIoT ha identificato un

totale di 49 vulnerabilità CRITICAL e 131 vulnerabilità HIGH, rispetto a
1 vulnerabilità CRITICAL e 15 vulnerabilità HIGH nelle immagini Docker
di Mainflux.
L’analisi del codice sorgente ha rivelato che i componenti diMainflux e UrbanIoT

presentano vulnerabilità distribuite tra diverse classi di severità. Per il backend di
UrbanIoT, Trivy ha identificato 2 vulnerabilità CRITICAL e 9 vulnerabilità
HIGH, mentre Gosec ha rilevato 4 vulnerabilità HIGH e questi dati confermano
l’importanza di utilizzare strumenti multipli per ottenere una copertura più ampia
delle potenziali vulnerabilità, dato che Trivy si concentra sulle dipendenze mentre
Gosec sul codice sorgente.
Il dispositivo edge di UrbanIoT ha mostrato una concentrazione elevata di vulne-

rabilità di gravità variabile, infatti l’analisi con Trivy ha rilevato 18 vulnerabilità
CRITICAL e 134 vulnerabilità HIGH nel file system del dispositivo, mentre
Lynis ha prodotto un hardening index score [A.0.61] pari a 60, suggerendo
margini significativi di miglioramento nelle configurazioni di sicurezza del disposi-
tivo.

Le vulnerabilità individuate dai vari strumenti di analisi statica hanno eviden-
ziato la prevalenza di alcune categorie di CWE, con una particolare concentrazione
nelle CWE-400 (unrestricted resource consumption), CWE-20 (improper input
validation), e CWE-287 (improper authentication), categorie che, quindi, rappre-
sentano le principali aree di rischio per il sistema analizzato, richiedendo interventi
specifici per la mitigazione.

Infine l’analisi del rischio complessivo ha prodotto un valore di 38/100,
indicando un livello moderato di rischio per l’intero sistema.



CAPITOLO 6. CONCLUSIONI 68

Tuttavia, il rischio specifico associato alle CWE e ai threats identificati varia
significativamente, con alcune categorie come CWE-400 e il threat nefarious acti-
vity/abuse che raggiungono punteggi di rischio relativamente alti (40/100).

I risultati ottenuti dimostrano che la metodologia proposta consente di deter-
minare un quadro completo e dettagliato delle vulnerabilità e dei rischi associati
ad architetture a microservizi complesse in maniera continua, rispettando, quindi,
la definizione di software assurance [1.4] per quanto riguarda la verifica continua
delle proprietà di sicurezza definite a monte, attraverso anche i risultati dei rischi
calcolati.
Ciò supera le limitazioni delle tecniche tradizionali di analisi, consistenti in ese-

cuzioni di uno o più tool di sicurezza su singoli target, le quali non forniscono un
risultato aggregato significativo, il quale è determinante per effettuare le giuste scel-
te di prioritizzazione delle remediation delle vulnerabilità [A.0.42], le quali hanno
un impatto altamente significativo nella prevenzione agli attacchi.

Alla luce dei risultati ottenuti, la metodologia può essere sicuramente estesa con
alcuni sviluppi futuri che possono riguardare:

• Integrazione della metodologia proposta nelle pipeline di sviluppo esistenti
utilizzando le API di MoonCloud;

• Estensione della metodologia con tecniche di analisi dinamica (ad esempio
fuzzing [A.0.58] e penetration testing [1.4.2]) in grado di individuare tipologie
di vulnerabilità non individuabili attraverso l’analisi statica;

• Ricerca ed integrazione di altri tool di analisi di sicurezza progettati per altre
tipologie di target (ad esempio dispositivi mobile, smart contract [A.0.96],
infrastrutture di rete e sistemi di controllo industriale);

• Potenziamento del mapping tra le vulnerabilità e i threat attraverso altre me-
triche di calcolo del rischio e integrazione di altri metodi di visualizzazione dei
dati.
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Definizioni

Definizione A.0.1. I microservizi sono un’architettura di sviluppo software in
cui un’applicazione è suddivisa in una serie di servizi piccoli e indipendenti che co-
municano tra loro tramite API. Ogni microservizio è progettato per eseguire una
singola funzione e può essere sviluppato, distribuito e scalato in modo indipen-
dente dagli altri servizi, migliorando la modularità, facilitando la manutenzione,
l’aggiornamento e la scalabilità delle applicazioni complesse [Newman, 2015].
Definizione A.0.2. Il provisioning di risorse è il processo di configurazione
e gestione automatizzata delle risorse informatiche, come server, storage e reti
[et al., 2016].
Definizione A.0.3. Il cloud si riferisce a un modello di computing che permette
l’accesso a un insieme condiviso di risorse informatiche configurabili (come reti,
server, storage, applicazioni e servizi) che possono essere avviate rapidamente al
fine di offrire scalabilità, elasticità e flessibilità, consentendo alle organizzazioni di
adattare rapidamente le risorse alle proprie esigenze [Mell and Grance, 2011].
Definizione A.0.4. Le infrastrutture on-premises sono risorse IT, come server,
storage e reti, che sono fisicamente situate all’interno dei locali di un’organizzazione.
Queste infrastrutture sono gestite e mantenute dall’organizzazione stessa, offrendo
controllo diretto e completo sulle risorse hardware e software. Le soluzioni on-
premises sono spesso preferite per motivi di sicurezza, conformità e prestazioni, ma
comportano costi iniziali elevati e necessitano di personale qualificato per la gestione
e la manutenzione [Miller et al., 2016].
Definizione A.0.5. Un container è un’unità standard di software che raggruppa
il codice e tutte le sue dipendenze, permettendo che un’applicazione venga eseguita
in modo rapido, isolata e affidabile da un ambiente di elaborazione all’altro. I
container virtualizzano il sistema operativo e sono più leggeri rispetto alle macchine
virtuali [Merkel, 2014].
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Definizione A.0.6. Gli orchestratori di container sono strumenti e piatta-
forme software che automatizzano il deployment, la gestione, il ridimensionamen-
to e il networking di applicazioni containerizzate. Essi gestiscono cluster di con-
tainer, distribuendo carichi di lavoro e garantendo alta disponibilità e resilienza
[Bernstein, 2014].

Definizione A.0.7. Kubernetes1 è una piattaforma open source per l’automa-
zione della gestione, del deployment e dello scaling di applicazioni containerizzate.
Kubernetes fornisce un sistema per orchestrare container su cluster di macchine,
facilitando il bilanciamento del carico, la gestione delle risorse e la resilienza delle
applicazioni [Kubernetes Authors, 2021].

Definizione A.0.8. Docker2 è una piattaforma open source che automatizza
la distribuzione di applicazioni all’interno di container software. Docker consen-
te di separare le applicazioni dall’infrastruttura, facilitando il delivery continuo e
migliorando la portabilità delle applicazioni tra diversi ambienti [Merkel, 2014].

Definizione A.0.9. Un Dockerfile è un file di testo contenente una serie di istru-
zioni che definiscono i passaggi per creare un’immagine Docker, come configurazioni
dell’ambiente, fasi di installazione delle dipendenze e copia di file dalla macchina
host [Turnbull, 2014].

Definizione A.0.10. Docker compose3 è uno strumento per la definizione e la
gestione di applicazioni Docker multi-container. Utilizzando un file YAML4, Doc-
ker Compose consente di configurare i servizi, le reti e i volumi necessari per eseguire
un’applicazione completa in ambienti di sviluppo, test e produzione [Turnbull, 2014].

Definizione A.0.11. Il load balancing è una tecnica di distribuzione uniforme
del traffico di rete o delle richieste di elaborazione tra diversi server, risorse o nodi in
un ambiente informatico. L’obiettivo del load balancing è ottimizzare l’utilizzo delle
risorse, massimizzare il throughput, minimizzare la latenza e garantire l’affidabilità
e la disponibilità dei servizi [Awduche et al., 2002].

Definizione A.0.12. Agile è un insieme di metodologie di sviluppo software che
promuovono un approccio iterativo e incrementale al fine di favorire la collaborazione
tra team cross-funzionali e la flessibilità nel rispondere ai cambiamenti attraverso
l’interazione costante con il cliente [Beck et al., 2001].

1https://kubernetes.io
2https://docker.com
3https://docs.docker.com/compose
4https://yaml.org

https://kubernetes.io
https://docker.com
https://docs.docker.com/compose
https://yaml.org


APPENDICE A. DEFINIZIONI 71

Definizione A.0.13. Il riuso, in informatica, si riferisce alla pratica di utilizzare
componenti software esistenti, come librerie, moduli, codice sorgente o architetture,
in nuovi contesti o applicazioni. L’obiettivo del riuso è ridurre il tempo di sviluppo, i
costi e migliorare la qualità e la manutenzione del software, evitando la duplicazione
di sforzi e sfruttando soluzioni già collaudate [Krueger, 1992].
Definizione A.0.14. La scalabilità è la capacità di un sistema, rete o processo
di gestire una quantità crescente di lavoro o la sua potenziale capacità di essere
ampliato per accogliere tale crescita. Un sistema è considerato scalabile se può
aumentare le proprie prestazioni proporzionalmente all’incremento delle risorse ag-
giunte, come CPU, memoria o nodi di rete, senza compromettere la funzionalità o
l’efficienza [Bondi, 2000].
Definizione A.0.15. La resilienza del sistema è la capacità di un sistema di
continuare a funzionare correttamente e di riportarsi nello stato di funzionamento
normale a seguito di eventuali guasti, attacchi o altre perturbazioni. Un siste-
ma resiliente è progettato per mantenere un livello accettabile di servizio anche
in condizioni avverse, minimizzando l’impatto delle interruzioni e ripristinando le
funzionalità normali nel più breve tempo possibile [Laprie, 2008].
Definizione A.0.16. La fault tolerance è la capacità di un sistema di continua-
re a funzionare correttamente anche in presenza di guasti o malfunzionamenti di
alcuni dei suoi componenti. In particolare, attraverso la ridondanza, la rilevazione
dei guasti e l’adozione di strategie di ripristino, permettono al sistema di mante-
nere la continuità operativa e ridurre al minimo l’impatto dei malfunzionamenti.
[Johnson, 1989].
Definizione A.0.17. I costi di manutenzione sono le spese associate al processo
di aggiornamento, miglioramento e riparazione del software dopo il suo rilascio.
Ad esempio, questi costi riguardano la correzione di bug, l’adattamento a nuovi
ambienti hardware o software, l’aggiunta di nuove funzionalità e il miglioramento
delle prestazioni e della sicurezza [Somerville, 2011].
Definizione A.0.18. La fase di dismissione è il processo di ritiro dal servizio
di sistemi, applicazioni o componenti IT, garantendo che tutte le informazioni e i
dati sensibili vengano trattati in modo sicuro e che le risorse vengano recuperate
o eliminate correttamente per prevenire accessi non autorizzati o perdita di dati
[ISO, 2013].
Definizione A.0.19. Il termine open source si riferisce a un modello di sviluppo
del software in cui il codice sorgente è reso disponibile al pubblico sotto una licenza
che permette a chiunque di vedere, modificare e distribuire il codice. Questo ap-
proccio promuove la collaborazione e l’innovazione, consentendo agli sviluppatori
di migliorare continuamente il software [Raymond, 2001].
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Definizione A.0.20. Il Software as a Service (abbreviato SaaS) è un modello di
distribuzione del software in cui le applicazioni sono ospitate da un fornitore di ser-
vizi e rese disponibili agli utenti attraverso Internet. Gli utenti accedono al software
tramite un browser web, senza necessità di installazioni locali o gestione dell’infra-
struttura bensì solo attraverso un abbonamento, riducendo i costi di gestione e di
aggiornamento del software [Choudhary, 2007].
Definizione A.0.21. Un repository git è un archivio che contiene tutti i file e
la cronologia delle revisioni di un progetto gestito con il sistema di controllo delle
versioni git5. I repositoryg git possono essere locali o remoti e consentono agli
sviluppatori di collaborare, tenere traccia delle modifiche al codice e gestire versioni
multiple del software [Chacon and Straub, 2014].
Definizione A.0.22. Gli stack tecnologici sono combinazioni di tecnologie, stru-
menti e framework utilizzati insieme per sviluppare e gestire un’applicazione soft-
ware [Fowler, 2002].
Definizione A.0.23. Il backend è la parte di un’applicazione o di un sistema
informatico che gestisce la logica di business, l’elaborazione dei dati e l’interazione
con il database. Esso opera ”dietro le quinte” per garantire che le operazioni richie-
ste dall’utente, attraverso l’interfaccia frontend, vengano eseguite correttamente
[Bass et al., 2003].
Definizione A.0.24. Il frontend è la parte di un’applicazione o di un sistema
informatico con cui gli utenti interagiscono direttamente ed è responsabile della
visualizzazione dei dati provenienti dal backend e dell’elaborazione degli input de-
gli utenti. Esso include l’user interface (UI) e l’user experience (UX) al fine di
presentare le informazioni in modo accessibile e intuitivo [Bass et al., 2003].
Definizione A.0.25. AngularJS6 è un framework open-source per lo sviluppo
di applicazioni web mantenuto da Google e da una comunità di sviluppatori indi-
pendenti. Basato su JavaScript, AngularJS estende il linguaggio HTML con nuove
direttive e offre strumenti per il data binding bidirezionale, l’iniezione di dipendenze
e la gestione di applicazioni a pagina singola [AngularJS Authors, 2021].
Definizione A.0.26. Il JavaScript Object Notation (abbreviato JSON7) è un
formato di interscambio di dati leggero, facile da leggere e scrivere sia per gli esseri
umani che per le macchine. JSON è basato su un sottoinsieme del linguaggio
di programmazione JavaScript e viene utilizzato principalmente per trasmettere
dati strutturati tra un server e un client web, come parte della comunicazione tra
applicazioni web [Crockford, 2006].

5https://git-scm.com
6https://angularjs.org
7https://json.org

https://git-scm.com
https://angularjs.org
https://json.org
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Definizione A.0.27. JSONWeb Token (abbreviato JWT8) è uno standard open
source (RFC 7519) che definisce un metodo compatto e autonomo per la trasmissione
sicura di informazioni tra le parti. Queste informazioni possono essere verificate
perché sono firmate digitalmente, infatti i token JWT sono comunemente usati per
l’autenticazione e l’autorizzazione in applicazioni web, permettendo la trasmissione
di richieste di autenticazione tra client e server in modo sicuro [Jones et al., 2015].

Definizione A.0.28. Un’Application Programming Interface (abbreviato API)
è un insieme di regole e definizioni che permette a diverse applicazioni software di
comunicare tra loro. Le API definiscono i metodi e i dati che le applicazioni pos-
sono utilizzare per richiedere servizi, scambiare informazioni e interagire con altre
applicazioni, sistemi operativi o librerie [Fielding, 2000].

Definizione A.0.29. Una minaccia (o threat) è una potenziale causa di un inci-
dente indesiderato che può danneggiare un sistema o un’organizzazione [ISO, 2013].

Definizione A.0.30. Una vulnerabilità è una debolezza di un asset o di un
controllo che può essere sfruttata da una o più minacce [ISO, 2013].

Definizione A.0.31. La gap analysis è una tecnica utilizzata per confrontare le
prestazioni attuali di un’organizzazione, un progetto o un processo con le prestazioni
desiderate o attese. Questo processo identifica le differenze (o gap) tra lo stato
attuale e quello desiderato, consentendo di sviluppare strategie per colmare tali
lacune [ISO, 2018c].

Definizione A.0.32. La threat analysis è il processo di valutazione e compren-
sione delle potenziali minacce che potrebbero compromettere la sicurezza di un si-
stema. Questo processo include l’identificazione delle minacce, la valutazione delle
loro capacità e potenziali impatti [ISO, 2013].

Definizione A.0.33. L’approccio STRIDE è un modello di minaccia utilizzato
per identificare potenziali minacce alla sicurezza di un sistema informatico. STRI-
DE è un acronimo che rappresenta sei categorie di minacce: spoofing (falsifica-
zione dell’identità), tampering (manomissione dei dati), repudiation (ripudio),
information disclosure (divulgazione non autorizzata di informazioni),Denial of
Service (negazione del servizio) e elevation of privilege (elevazione dei privilegi)
[Hernan et al., 2006].

Definizione A.0.34. L’analisi SWOT è uno strumento strategico utilizzato per
identificare e analizzare i punti di forza (strengths), le debolezze (weaknesses),
le opportunità (opportunities) e le minacce (threats) di un’organizzazione o di

8https://jwt.io
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un progetto. Questo approccio consente di valutare sia gli aspetti interni (for-
ze e debolezze) che quelli esterni (opportunità e minacce), fornendo una pano-
ramica completa della situazione attuale e facilitando la pianificazione strategica
[Gürel and Tat, 2017].

Definizione A.0.35. I requisiti di sicurezza sono specifiche dettagliate che defi-
niscono le misure e i controlli necessari per proteggere un sistema informatico, una
rete o un’applicazione da minacce e vulnerabilità. Questi requisiti includono aspetti
come la riservatezza, l’integrità, la disponibilità, l’autenticazione, l’autorizzazione e
la conformità alle normative. [Shostack, 2014].

Definizione A.0.36. Uno stakeholder è una persona o un’organizzazione che
può influenzare, essere influenzata, o percepirsi come influenzata da una decisione,
attività o risultati di un progetto o processo [ISO, 2018b].

Definizione A.0.37. Il rischio è l’effetto dell’incertezza sugli obiettivi, spesso
quantificato come una combinazione della probabilità di un evento e delle sue con-
seguenze. Nel contesto della sicurezza delle informazioni il rischio è legato alla
possibilità che una minaccia sfrutti una vulnerabilità causando un impatto negativo
sull’organizzazione [ISO, 2013].

Definizione A.0.38. L’analisi del rischio è il processo di identificazione, valu-
tazione e prioritizzazione dei rischi, seguito dall’applicazione coordinata di risorse
per minimizzare, monitorare e controllare la probabilità e/o l’impatto degli eventi
avversi [ISO, 2013].

Definizione A.0.39. Le matrici di rischio sono strumenti utilizzati per valutare
e visualizzare i rischi associati a un progetto, un’attività o un’organizzazione, aiu-
tando a prioritizzarli al fine di facilitare la decisione su quali rischi devono essere
gestiti per primi e quali possono essere monitorati e gestiti in un secondo momento.
In particolare, una matrice di rischio rappresenta i rischi su una griglia bidimensio-
nale dove un asse rappresenta la probabilità di occorrenza del rischio e l’altro asse
rappresenta l’impatto del rischio [ISO, 2018b].

Definizione A.0.40. L’audit è un processo sistematico, indipendente e documen-
tato per ottenere evidenze e valutarle obiettivamente al fine di determinare in che
misura i criteri di audit siano soddisfatti. Gli audit possono essere interni o esterni
e sono utilizzati per garantire che le pratiche, le procedure e i controlli di un’or-
ganizzazione siano conformi agli standard, alle normative e ai requisiti stabiliti
[ISO, 2018a].

Definizione A.0.41. I controlli di sicurezza sono misure, politiche, procedure
e tecniche implementate per ridurre i rischi per la sicurezza delle informazioni.
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Questi controlli mirano a proteggere la riservatezza, l’integrità e la disponibilità
delle informazioni, prevenendo accessi non autorizzati, uso improprio, divulgazione,
distruzione o modifica delle stesse [ISO, 2013].

Definizione A.0.42. La remediation delle vulnerabilità è il processo di iden-
tificazione delle vulnerabilità di sicurezza nei sistemi informatici, valutazione del
rischio associato e implementazione di misure correttive per eliminare o mitigare
tali vulnerabilità [ISO, 2013].

Definizione A.0.43. Il Common Weakness Enumeration (abbreviato CWE9)
è un dizionario di debolezze di sicurezza del software e delle vulnerabilità sviluppato
per aiutare a identificare, mitigare e prevenire i difetti nei software. Il CWE fornisce
una tassonomia standardizzata delle debolezze del software, permettendo ai profes-
sionisti della sicurezza, agli sviluppatori e agli auditor di comunicare in modo efficace
sui problemi di sicurezza e di migliorare la qualità del software attraverso l’uso di
best practice e metodologie di sviluppo sicure [The MITRE Corporation, 2021b].

Definizione A.0.44. Il Common Vulnerabilities and Exposures (abbrevia-
to CVE10) è un elenco di informazioni di riferimento standardizzate riguardan-
ti le vulnerabilità di sicurezza note nei sistemi software e hardware. Esso è ge-
stito dal MITRE Corporation e National Institute of Standards and Technology
(NIST). In particolare, ogni CVE contiene un identificatore univoco, una descri-
zione della vulnerabilità e riferimenti a informazioni di mitigazione e risoluzione
[The MITRE Corporation, 2021a].

Definizione A.0.45. Il Common Vulnerability Scoring System (abbreviato
CVSS11) è uno standard aperto per l’assegnazione di punteggi alla gravità delle
vulnerabilità di sicurezza informatica. CVSS quantifica la gravità delle vulnerabilità
basandosi su metriche come l’accessibilità, la complessità dell’attacco e l’impatto
sulla riservatezza, integrità e disponibilità [Mell et al., 2006].
CVSS esiste in due versioni: V2 e V3. La versione V2 utilizza metriche base

per determinare la gravità delle vulnerabilità, mentre la versione V3 introduce una
maggiore granularità delle metriche, metriche temporali e ambientali e una scala di
punteggio più ampia, rendendo la valutazione più accurata e rappresentativa delle
vulnerabilità moderne [Mell et al., 2007].

Definizione A.0.46. La severity (o gravità) è una misura della serietà o dell’im-
patto potenziale di una vulnerabilità di sicurezza. Essa valuta il livello di dan-
no che una vulnerabilità potrebbe causare se sfruttata, tenendo conto di fattori

9https://cwe.mitre.org
10https://cve.mitre.org
11https://nvd.nist.gov/vuln-metrics/cvss
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come l’integrità, la riservatezza e la disponibilità dei sistemi e dei dati coinvolti
[FIRST, 2019].

Definizione A.0.47. Lo score (o punteggio) è un valore numerico assegnato a una
vulnerabilità per rappresentarne il livello di rischio complessivo. Questo punteggio è
spesso calcolato utilizzando metriche standardizzate, come il Common Vulnerability
Scoring System (CVSS), che prendono in considerazione fattori come l’accessibilità,
la complessità dell’attacco, l’impatto e la severità [FIRST, 2019].

Definizione A.0.48. I dati sensibili sono informazioni quali informazioni per-
sonali, dati finanziari, segreti commerciali e altre informazioni riservate che, se
divulgate, possono causare danni o rischi significativi [ISO, 2013].

Definizione A.0.49. La compliance è il rispetto di leggi, regolamenti, standard
e linee guida pertinenti applicabili a un’organizzazione. Nel contesto della sicurezza
delle informazioni, la compliance implica l’adozione di misure e controlli necessa-
ri per garantire che le pratiche aziendali soddisfino i requisiti legali e normativi
[ISO, 2013].

Definizione A.0.50. H2020-CONCORDIA12 è un progetto di ricerca finanziato
dal programma Horizon 202013 dell’Unione Europea14 (UE), finalizzato a sviluppare
e migliorare le capacità di cybersecurity in Europa. Il progetto CONCORDIA riuni-
sce esperti accademici, industriali e governativi per collaborare su soluzioni innova-
tive e per promuovere l’educazione e la consapevolezza sulla sicurezza informatica
[CONCORDIA, 2021].

Definizione A.0.51. L’Agenzia dell’Unione Europea per la Cybersecuri-
ty (abbreviato ENISA15) è un’agenzia dell’UE che ha il compito di migliorare la
sicurezza delle reti e delle informazioni nell’Unione Europea, fornendo competenze,
supporto e risorse per aiutare gli Stati membri e le istituzioni dell’UE a prevenire,
rilevare e rispondere agli incidenti di sicurezza informatica [ENISA, 2021].

Definizione A.0.52. Il National Institute of Standards and Technology
(abbreviato NIST16) è un’agenzia del Dipartimento del Commercio degli Stati Uniti,
che fornisce standard, linee guida e best practice per migliorare la sicurezza delle
informazioni e delle tecnologie informatiche [NIST, 2021].
12https://concordia-h2020.eu
13https://horizon2020.apre.it
14https://european-union.europa.eu
15https://enisa.europa.eu
16https://nist.gov
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Definizione A.0.53. IlGeneral Data Protection Regulation (abbreviato GD-
PR17) è un regolamento dell’UE che disciplina la protezione dei dati personali e la
privacy dei cittadini dell’UE. Entrato in vigore il 25 maggio 2018, esso stabilisce
rigide norme su come le organizzazioni devono raccogliere, trattare, conservare e
proteggere i dati personali, garantendo ai cittadini maggiori diritti di controllo sui
propri dati [Voigt and Von dem Bussche, 2017].

Definizione A.0.54. Il Payment Card Industry Data Security Standard
(abbreviato PCI-DSS18) è uno standard di sicurezza delle informazioni istituito per
proteggere i dati delle carte di pagamento sviluppato dal Payment Card Industry
Security Standards Council. Il PCI-DSS stabilisce un insieme di requisiti tecni-
ci e operativi per garantire che tutte le organizzazioni che gestiscono, elaborano
o trasmettono informazioni sulle carte di credito mantengano un ambiente sicuro
[Council, 2022].

Definizione A.0.55. Il Capability Assessment for AI (abbreviato CapAI19)
è un framework progettato per valutare le capacità e la maturità delle soluzio-
ni di intelligenza artificiale. Questo framework fornisce linee guida e criteri per
analizzare vari aspetti delle tecnologie di intelligenza artificiale, come la loro effi-
cacia, sicurezza, eticità e conformità a normative e standard, al fine di implemen-
tare e gestire soluzioni di intelligenza artificiale in modo responsabile e sostenibile
[European Commission, 2020b].

Definizione A.0.56. L’Assessment List for Trustworthy Artificial Intelli-
gence (abbreviato ALTAI20) è un insieme di linee guida e strumenti sviluppati dalla
Commissione Europea21 per promuovere l’uso responsabile e affidabile dell’intelli-
genza artificiale. ALTAI fornisce un elenco di criteri per valutare se una soluzione
di intelligenza artificiale rispetta i principi etici fondamentali quali trasparenza,
responsabilità, non discriminazione e sicurezza [European Commission, 2020a].

Definizione A.0.57. Il reverse engineering è il processo di analisi di un siste-
ma, un componente o un dispositivo per comprenderne il funzionamento interno, la
struttura e il design originario. Questo processo implica l’esame dettagliato del pro-
dotto finale per ricostruire il suo progetto originale, il codice sorgente o le specifiche
tecniche [Chikofsky and Cross, 1990].

17https://gdpr.eu
18https://pcisecuritystandards.org
19https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4064091
20https://digital-strategy.ec.europa.eu/it/policies/european-approach-artificial-intelligence
21https://commission.europa.eu
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Definizione A.0.58. Il fuzzing è una tecnica di analisi dinamica utilizzata per
individuare vulnerabilità e bug nei software che consiste nell’inviare dati di in-
put casuali oppure non validi a un programma, osservandone il comportamento
per rilevare eventuali errori, crash, memory leaks o altri problemi di sicurezza
[Sutton et al., 2007].

Definizione A.0.59. Un tool di sicurezza è un software o uno strumento utiliz-
zato per proteggere sistemi informatici, reti e dati dalle minacce di sicurezza. Questi
strumenti possono svolgere una varietà di funzioni, tra cui la rilevazione di malware,
la gestione delle vulnerabilità, la cifratura dei dati, il monitoraggio del traffico di
rete, e l’esecuzione di penetration test [1.4.2] [Stallings, 2015].

Definizione A.0.60. Le pratiche di codifica sicura (oppure secure coding prac-
tices) sono un insieme di linee guida e metodologie progettate per aiutare gli svi-
luppatori a scrivere codice privo di vulnerabilità che potrebbero essere sfruttate
da attaccanti per compromettere la sicurezza del software. Queste pratiche in-
cludono l’uso di tecniche di validazione degli input, la gestione sicura delle risor-
se, la protezione dei dati sensibili e l’adozione di controlli di accesso appropriati
[Open Web Application Security Project, 2010].

Definizione A.0.61. L’hardening è il processo di miglioramento della sicurezza
di un sistema informatico per minimizzare la superficie di attacco mediante la ri-
duzione delle sue vulnerabilità. Questo processo include l’applicazione di patch e
aggiornamenti, la configurazione sicura di software e hardware, la rimozione di ser-
vizi e applicazioni non necessari e l’implementazione di controlli di accesso rigorosi
[Lynch, 2006].

Definizione A.0.62. La revisione del codice peer-to-peer è il processo median-
te il quale sviluppatori esaminano reciprocamente il codice sorgente per individuare
errori, migliorare la qualità del software e garantire la conformità agli standard di
codifica [McConnell, 2004].

Definizione A.0.63. La verifica e validazione del software sono processi di-
stinti ma correlati volti a garantire che il software soddisfi i requisiti specificati e
funzioni correttamente. La verifica si concentra sull’assicurare che il software sia
stato costruito correttamente, mentre la validazione si concentra sull’assicurare
che il software costruito sia quello giusto per gli scopi previsti [IEEE, 2016].

Definizione A.0.64. Un artifact (o artefatto), nel contesto dello sviluppo soft-
ware, è un qualsiasi prodotto tangibile che viene creato durante il ciclo di vita del
software. Ad esempio, tra gli artifact rientrano il codice sorgente, la documentazio-
ne, i modelli di design, le specifiche dei requisiti e gli eseguibili [Pressman, 2005].
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Definizione A.0.65. Un payload malevolo è la parte di un attacco informatico
che esegue fisicamente le azioni dannose su un sistema bersaglio, come la cancel-
lazione di dati, il furto di informazioni sensibili, l’installazione di malware, o la
compromissione della funzionalità del sistema [Skoudis and Zeltser, 2004].
Definizione A.0.66. Lo spazio degli stati è una rappresentazione astratta di
tutte le possibili configurazioni di un sistema in cui ogni punto nello spazio degli
stati corrisponde a un possibile stato del sistema, definito dai valori delle variabili
di stato che descrivono il sistema stesso [Bellman, 1957].
Definizione A.0.67. I sistemi concorrenti sono sistemi in cui diversi processi
o thread vengono eseguiti simultaneamente, potenzialmente interagendo tra loro,
attraverso la gestione della sincronizzazione e della comunicazione tra processi, per
migliorare l’efficienza e le prestazioni mediante l’esecuzione parallela delle operazioni
[Tanenbaum and Bos, 2007].
Definizione A.0.68. Undefined behaviour è un termine utilizzato in informa-
tica per descrivere il comportamento di un programma che non è specificato dal
linguaggio di programmazione in determinate condizioni. Quando un programma
presenta un undefined behaviour, il risultato può variare a seconda del compila-
tore, del sistema operativo o dell’architettura hardware, rendendo il programma
potenzialmente instabile o insicuro [ISO, 2018d].
Definizione A.0.69. Un side channel attack è un tipo di attacco basato su
informazioni supplementari che possono essere raccolte a causa del modo in cui un
protocollo o un algoritmo informatico è implementato oppure a causa di difetti nel
design del protocollo o dell’algoritmo stesso [Kocher, 1996].
Definizione A.0.70. Un buffer overflow è un tipo di side channel attack [A.0.69]
che si verifica quando un programma scrive più dati di quelli che un buffer può con-
tenere, sovrascrivendo dati adiacenti in memoria. Ciò può corrompere l’esecuzione
di un programma e consentire l’esecuzione di codice dannoso [Cowan et al., 2000].
Definizione A.0.71. Un heap overflow è un tipo specifico di buffer overflow che si
verifica nell’heap, l’area di memoria dinamica utilizzata per l’allocazione dinamica
di memoria a tempo di esecuzione, causando comportamenti imprevisti, crash di
sistema o esecuzione di codice arbitrario [Seacord, 2005].
Definizione A.0.72. Le race conditions sono situazioni che si verificano quando
il comportamento di un sistema informatico dipende dall’ordine o dalla tempistica
delle operazioni in esecuzione, causando potenzialmente comportamenti imprevisti
o errori. Questo avviene spesso in contesti di programmazione concorrente, quando
più thread o processi accedono e manipolano risorse condivise senza un’adeguata
sincronizzazione [Bishop, 2005].
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Definizione A.0.73. La SQL injection è una tecnica di attacco informatico che
consente a un attaccante di interferire con le query SQL che un’applicazione esegue
sul suo database. Questa tecnica di attacco sfrutta l’inserimento di codice SQL
malevolo nei campi di input, permettendo all’attaccante di visualizzare, modificare
o eliminare dati non autorizzati [Open Web Application Security Project, 2017b].
Definizione A.0.74. Il Cross-Site Scripting (abbreviato XSS) è una vulnerabi-
lità di sicurezza che consente a un attaccante di iniettare script maligni nelle pagine
web visualizzate da altri utenti. Questi script possono essere utilizzati per rubare
dati sensibili, come cookie di sessione, sessioni di autenticazione, o per eseguire altre
azioni dannose a nome della vittima [Open Web Application Security Project, 2017a].
Definizione A.0.75. La privilege escalation è una tecnica di attacco informa-
tico in cui un utente ottiene livelli di accesso superiori rispetto a quelli assegnati
originariamente. Questo può avvenire sfruttando vulnerabilità nel software, errori
di configurazione o altre debolezze di sicurezza [Hoglund and McGraw, 2004].
Definizione A.0.76. Gli attacchi Denial of Service (abbreviato DoS) e Distri-
buted Denial of Service (abbreviato DDoS) mirano a rendere inaccessibili servizi,
risorse o reti a utenti legittimi sovraccaricando il sistema bersaglio con un’eccessiva
quantità di richieste da una singola fonte. Gli attacchi DDoS utilizzano molteplici
fonti distribuite per amplificare l’impatto, rendendo più difficile mitigare l’attacco
[Mirkovic and Reiher, 2004].
Definizione A.0.77. L’eavesdropping è un tipo di attacco di sicurezza in cui
un malintenzionato intercetta e ascolta comunicazioni private tra due parti senza il
loro consenso, con l’obiettivo di raccogliere informazioni sensibili come credenziali
di accesso, dati personali e dettagli finanziari [Stallings, 2015].
Definizione A.0.78. L’interception è un attacco in cui un malintenzionato in-
tercetta, e potenzialmente altera, i dati in transito tra due parti. A differenza
dell’eavesdropping, che si limita all’ascolto passivo, l’interception può includere la
modifica attiva dei messaggi per compromettere l’integrità e la riservatezza delle
comunicazioni [Stallings, 2015].
Definizione A.0.79. L’hijacking è un attacco informatico in cui un malintenzio-
nato prende il controllo di una sessione di comunicazione attiva tra due parti senza
il loro consenso. Ad esempio, nel session hijacking, l’attaccante ruba una sessio-
ne autenticata, mentre nel clickjacking, l’utente è ingannato a cliccare su elementi
nascosti che eseguono azioni non desiderate [Stallings, 2015].
Definizione A.0.80. L’Internet of Things (abbreviato IoT) è un sistema di
dispositivi fisici interconnessi, veicoli, elettrodomestici e altri oggetti che utilizza-
no sensori, software e altre tecnologie per connettersi e scambiare dati con altri
dispositivi e sistemi attraverso Internet [Atzori et al., 2010].
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Definizione A.0.81. L’Edge Cloud Continuum è un paradigma informatico
che integra risorse di elaborazione cloud centralizzate con risorse di elaborazio-
ne distribuite ai margini della rete (edge). Questo continuum permette di sfrut-
tare la potenza del cloud computing per operazioni intensive e di bassa latenza,
mentre le risorse edge gestiscono l’elaborazione locale, riducendo la latenza e mi-
gliorando la reattività delle applicazioni. Questo approccio combina i vantaggi del
cloud e dell’edge computing, offrendo flessibilità, scalabilità e prestazioni ottimizzate
[Satyanarayanan, 2017].

Definizione A.0.82. File Allocation Table 32 (abbreviato FAT32) è un file
system sviluppato da Microsoft nel 1996 come evoluzione dei precedenti file system
FAT12 e FAT16.
FAT32 utilizza una tabella di allocazione dei file a 32 bit, permettendo di gestire

partizioni di disco rigido di dimensioni fino a 2 terabyte e file individuali fino a 4
gigabyte [Microsoft, 1996].

Definizione A.0.83. Il Device Tree Blob (abbreviato DTB) è una rappresen-
tazione binaria della struttura ad albero del dispositivo (Device Tree), che descrive
l’hardware di un sistema al kernel del sistema operativo. Il Device Tree Blob contiene
informazioni sulle periferiche hardware, come i bus, i dispositivi e le loro proprie-
tà, permettendo al kernel di configurare e gestire correttamente l’hardware durante
l’avvio [Brown and Hallinan, 2015].

Definizione A.0.84. Reduced Instruction Set Computer (RISC) è un’archi-
tettura di microprocessori che utilizza un insieme ridotto e altamente ottimizzato
di istruzioni per migliorare la velocità e l’efficienza del processore mediante l’esecu-
zione di un numero limitato di istruzioni semplici, piuttosto che un’ampia gamma
di istruzioni complesse [Hennessy and Patterson, 2011].

Definizione A.0.85. L’architettura ARM (Advanced RISC Machine) è una fa-
miglia di architetture per microprocessori basata su un design di tipo RISC [A.0.84],
sviluppata dalla ARM Holdings22. Caratterizzata da un’elevata efficienza energeti-
ca e prestazioni ottimali, l’architettura ARM è ampiamente utilizzata in dispositivi
mobili, dispositivi embedded e sistemi a bassa potenza [Furber, 2000].

Definizione A.0.86. Il Raspberry Pi23 è un microcomputer a basso costo e
di dimensioni ridotte sviluppato dalla Raspberry Pi Foundation nel Regno Unito,
composto da componenti minimani, quali il processore, la memoria, porte USB e
HDMI [Upton and Halfacree, 2014].
22https://arm.com
23https://raspberrypi.com
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Definizione A.0.87. Il boot loader è un software che viene eseguito all’avvio di
un computer o di un dispositivo embedded con lo scopo di inizializzare l’hardware del
sistema, caricare il sistema operativo in memoria, preparare l’ambiente di runtime
e trasferire il controllo al kernel del sistema operativo [Levine, 2009].

Definizione A.0.88. La mutua autenticazione TLS (Transport Layer Securi-
ty) è un processo di sicurezza in cui entrambi i lati di una comunicazione TLS,
cioè il client e il server, si autenticano reciprocamente utilizzando certificati digi-
tali. Durante la fase di handshake di una connessione TLS, il server fornisce il
proprio certificato al client e, a sua volta, richiede al client di presentare il proprio
certificato. Questo processo garantisce che entrambe le parti siano autentiche e au-
torizzate a stabilire la connessione, migliorando così la sicurezza delle comunicazioni
[Dierks and Rescorla, 2008].

Definizione A.0.89. I certificati X.509 sono standard di certificati digitali de-
finiti dalla raccomandazione ITU-T X.509. Essi sono utilizzati per gestire chiavi
pubbliche e per certificare l’identità di una o più entità in una rete. Un certifica-
to X.509 contiene informazioni come la chiave pubblica del soggetto, il nome del
soggetto, il nome dell’autorità di certificazione che ha emesso il certificato, una da-
ta di scadenza e altre informazioni necessarie per la crittografia e l’autenticazione
[Cooper et al., 2008].

Definizione A.0.90. Open Authorization (abbreviato OAuth24) è un protocollo
open source che consente a un’applicazione di ottenere accesso limitato alle risorse di
un utente su un altro servizio senza esporre le credenziali dell’utente [Hardt, 2012].

Definizione A.0.91. Il Secure Shell (abbreviato SSH25) è un protocollo di rete
crittografico utilizzato per operare servizi di rete in modo sicuro su una rete non
sicura. SSH fornisce un canale sicuro su una rete insicura in un’architettura client-
server, permettendo di eseguire comandi a distanza, trasferire file e gestire in modo
sicuro le chiavi di autenticazione [Ylonen, 1996].

Definizione A.0.92. L’Internet Protocol version 6 (abbreviato IPv6) è la ver-
sione più recente dell’Internet Protocol (IP), progettata per sostituire la versione
IPv4 a causa della continua crescita di dispositivi connessi a Internet con conse-
guente diminuzione dello spazio degli indirizzi disponibili. IPv6 offre uno spazio
di indirizzamento molto più ampio, miglioramenti nella gestione della sicurezza e
supporto per l’autoconfigurazione degli indirizzi [Hinden and Deering, 2006].

24https://oauth.net
25https://ssh.org

https://oauth.net
https://ssh.org
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Definizione A.0.93. Un Intrusion Detection System (abbreviato IDS) è un
dispositivo o software progettato per monitorare reti o sistemi informatici al fine
di rilevare attività sospette o malintenzionate. Gli IDS analizzano il traffico di
rete, i log di sistema e altre risorse per identificare potenziali attacchi o violazio-
ni di sicurezza, avvisando gli amministratori di sistema in caso di rilevamento di
comportamenti anomali [Scarfone and Mell, 2007].

Definizione A.0.94. Un Intrusion Prevention System (abbreviato IPS) è un
dispositivo di sicurezza di rete che monitora il traffico di rete per rilevare e prevenire
attività sospette o dannose, analizzando i pacchetti di dati ed, eventualmente, bloc-
cando il traffico che corrisponde a firme di attacchi noti [Scarfone and Mell, 2007].

Definizione A.0.95. La blockchain è una tecnologia di registro distribuito che
consente di registrare transazioni in maniera sicura, trasparente ed immutabile.
Ogni transazione è raccolta in un blocco e i blocchi sono concatenati in ordine
cronologico, formando una catena. Ogni blocco contiene un riferimento crittografico
al blocco precedente, al fine di garantire l’integrità della catena [Nakamoto, 2008].

Definizione A.0.96. Uno smart contract è un contratto auto-esecutivo in cui i
termini dell’accordo tra le parti sono scritti direttamente nel codice memorizzato in
una blockchain [A.0.95], al fine di permettere l’esecuzione automatica e sicura delle
transazioni e degli accordi senza la necessità di intermediari [Buterin, 2014].

Definizione A.0.97. La deserializzazione è il processo di conversione di una
rappresentazione di dati in formato seriale (come un file o un flusso di dati) in un
oggetto o una struttura di dati utilizzabile in memoria. Questo processo è l’opposto
della serializzazione, che converte un oggetto in un formato che può essere facilmente
memorizzato o trasmesso [Fowler, 2002].
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