
19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 1/16

/ / /󰋜 soasec progetto presentazione

Presentazione

La home di wls-productsales-app non richiede autenticazione e permette a chi si collega di visualizzare i
prodotti in vendita

Di seguito è presente un esempio di comunicazione base tra wls-productsales-app e wls-backend-server. In
questo caso viene mostrato l'ottenimento dei prodotti da parte del frontend al backend:

Introduzione
wls-productsales-app è un esempio di ERP di wholesaling di base che consente agli utenti di autenticarsi
con un server OAuth personalizzato e gestire diverse funzioni in base a diversi privilegi di accesso
(chiamati scopes).

▸

wls-auth-client Un'applicazione PHP per l'autenticazione OAuth, che restituisce codici di autorizzazione e
nomi utente per gli utenti autenticati a un endpoint modificabile

▸

wls-backend-server Server di autenticazione OAuth e backend del sistema di vendita all'ingrosso in
TypeScript

▸

Home

Comunizazione con wls-backend-server

▸

http://localhost/it/soasec
http://localhost/it/soasec/progetto
http://localhost/it/soasec/progetto/presentazione
Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 2/16

Per ogni tipo di endpoint (oauth, utenti, wholesaling), il flusso di esecuzione nel server di backend è strutturato
nelle seguenti sezioni:

▸

▸

1. routes
Definizione degli endpoint (get/post)

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 3/16

2. middleware di autenticazione
In questa schermata è presente il middleware di autenticazione semplice che controlla le chiavi CLIENTID
e CLIENTSECRET

3. controller
Gestisce le richieste HTTP e le operazioni necessarie per soddisfare una richiesta tra cui verifiche di
sicurezza, e poi delega l'effettiva estrazione/modifica dei dati al provider. Infine, il controller restituisce una
risposta HTTP al client.

4. provider
Svolge un ruolo intermedio tra il controller e il datamodel. Se necessario segue controlli basati su token
(verifica dei permessi) per garantire che l'utente abbia i diritti necessari per effettuare la modifica. In base
ai permessi dell'utente, il provider può chiamare funzioni specifiche del datamodel per eseguire l'effettiva
modifica dei dati.

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 4/16

L'autenticazione è obbligatoria per poter contattare gli endpoint che sono protetti da middleware che
richiedono un'autenticazione più forte rispetto alla semplice autenticazione con CLIENTID e CLIENTSECRET.

In particolare, se l'utente vuole loggarsi, wls-productsales-app effettua un redirect a wls-auth-client

wls-auth-client verifica le chiavi CLIENTID e CLIENTSECRET

5. datamodel
E' la parte più bassa dell'architettura ed è responsabile dell'accesso diretto al database o ai dati sottostanti
e si preoccupa principalmente delle operazioni CRUD (Create, Read, Update, Delete) sul database.

Autenticazione con Oauth

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 5/16

Se la verifica va a buon fine allora all'utente si apre la pagina dove è possibile inserire le credenziali

Vengono verificate le credenziali e viene creato un primo token JWT (userInfoToken) contenente i dati degli
utenti e i propri scopes

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 6/16

Se le credenziali sono valide, l'utente vede la pagina di consenso dove può scegliere se approvare o negare
l'accesso ai propri dati

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 7/16

Es. Accesso negato

Es. Accesso approvato, l'userInfoToken viene scambiato per un authorizationCode, il quale viene restituito ad
un endpoint di callback di wls-productsales-app. L'authorizationCode è un altro token JWT che contiene id,
username dell'utente e gli scopes

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 8/16

wls-productsales-app lo invierà a wls-backend-server per scambiarlo con un primo access token ed un refresh
token.

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 9/16

wls-productsales-app userà gli access token come chiave API Bearer per tutte le chiamate agli endpoint di wls-
backend-server che lo richiedono ed userà il refresh token (se ancora valido) per ottenere nuovi access token.

Con il primo access token, wls-productsales-app chiederà a wls-backend-server alcuni dati che servono per
inizializzare l'applicativo di visualizzazione e gestione dei prodotti/vendite.

N.B. Il refresh token e l'expiration vengono salvati nei cookie del browser in modo da consentire un ripristino
della sessione qualora il refresh token fosse ancora valido. In qualsiasi altro caso, all'utente viene richiesto di
autenticarsi di nuovo.

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 10/16

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 11/16

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 12/16

In questo caso l'utente root (privilegio di livello 0) ha accesso a tutte le funzionalità (CRUD su prodotti, CRUD
su vendite)

Tutti i token JWT sono firmati con la chiave privata e hanno il payload crittografato con la chiave pubblica al
fine di ottienere autenticità, integrità e riservatezza dei dati:

Crittografia dei token

Autenticità: Utilizzando la chiave privata per firmare il token JWT, si fornisce una prova che il token è stato
emesso da una fonte attendibile. Poiché chiunque riceva il token può verificare che sia autentico.

▸

Integrità: La firma digitale creata con la chiave privata garantisce che il contenuto del token non sia stato
modificato durante la sua trasmissione e quando il destinatario verifica la firma del token con la chiave
pubblica corrispondente, può essere sicuro che il token non sia stato alterato da terze parti durante il
trasporto.

▸

Riservatezza: La crittografia con la chiave pubblica assicura che solo chi possiede la chiave privata
corrispondente sarà in grado di decifrare il contenuto del payload. Pertanto, i dati nel payload rimarranno
confidenziali per chiunque non abbia accesso alla chiave privata (ce l'ha solo il server).

▸

 payloadInput

1
2

export function getEncryptedToken(
: any,

Giandonato Inverso

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 13/16

 expiresIn
 options
 resolve reject

 fs

 crypto
 encryptionOptions
 key fs
 filepath __dirname
 format
 padding crypto constants

 encryptedPayload crypto
 encryptionOptions Buffer payloadInput
 base64EncryptedPayload encryptedPayload

 payload
 data base64EncryptedPayload

 Jwtoptions jwt SignOptions
 algorithm
 expiresIn

 options
 Object Jwtoptions options

 privateKeyPEM fs
 filepath __dirname
 privateKey crypto
 key privateKeyPEM
 format
 passphrase process env

 jwt payload privateKey Jwtoptions err token
 err
 err

 token

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

: string,
?: any): Promise<string> {

return new Promise<string>((,) => {

const = require("fs");

// tslint:disable-next-line:no-shadowed-variable
const = require("crypto");
const = {

: .readFileSync(
.join(, "key", "public-key.pem"), "utf8"),

: "pem",
: . .RSA_PKCS1_OAEP_PADDING,

};

const = .publicEncrypt(
, .from(JSON.stringify()));

const = .toString("base64");

const = {
: ,

};

const : . = {
: "RS256",
,

};

if () {
.assign(,);

}

const = .readFileSync(
.join(, "key", "private-key.pem"), "utf8");

const = .createPrivateKey({
: ,

: "pem",
: . .OPENSSL_PASSPHRASE,

});

.sign(, , , (,) => {
if () {

reject();
} else {

resolve(|| "");
}

});
});

}

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 14/16

Ogni access token generato ha una durata fissata di 1 minuto, tempo sufficiente per la generazione e la
richiesta ad un endpoint che richiede tale token per l'autenticazione (potrebbe essere anche un tempo molto
più basso).

Inoltre è stata implementata una protezione in più per rendere gli access token monouso al fine di evitare i
replay attack.

In particolare all'avvio del software viene inizializzata una mappa che conterrà gli access token generati e che
una volta ricevuti dal server stesso saranno da essa rimossi.

 inputToken

 resolve reject

 crypto
 privateKeyPath filepath __dirname
 publicKeyPath filepath __dirname

 fs
 privateKeyPEM fs privateKeyPath

 publicKey fs publicKeyPath
 verifiedToken jwt
 inputToken publicKey algorithms

 base64EncryptedPayload verifiedToken data

 encryptionOptions
 key privateKeyPEM
 format
 passphrase process env
 padding crypto constants

 decryptedPayloadBuffer crypto
 encryptionOptions Buffer base64EncryptedPayload
 decryptedPayload
 decryptedPayloadBuffer

 decryptedPayload
 err
 err

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Access token monouso

export async function getDecryptedToken(: string):
Promise<any> {

return new Promise((,) => {
// tslint:disable-next-line:no-shadowed-variable
const = require("crypto");
const = .join(, "key", "private-key.pem
const = .join(, "key", "public-key.pem")

const = require("fs");
const = .readFileSync(, "utf8");

try {
const = .readFileSync(, "utf8");
const : any = .verify(

, , { : ["RS256"] });

const = . ;

const = {
: ,

: "pem",
: . .OPENSSL_PASSPHRASE,

: . .RSA_PKCS1_OAEP_PADDING,
};

const = .privateDecrypt(
, .from(, "base64"))

const = JSON.parse(
.toString("utf8"));

resolve();
} catch () {

reject();
}

});
}

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 15/16

Per evitare che un client generi troppi token e che rimangano inutilizzati, la mappa viene automaticamente
svuotati dopo un determinato periodo di tempo

Giandonato Inverso

19/10/23, 01:51 Presentazione | Wiki.js

localhost/it/soasec/progetto/presentazione 16/16

Basato su Wiki.js

https://wiki.js.org/
Giandonato Inverso

