Presentazione | Wiki.js

f soasec progetto presentazione

Presentazione

Introduzione

» wls-productsales-app & un esempio di ERP di wholesaling di base che consente agli utenti di autenticarsi

con un server OAuth personalizzato e gestire diverse funzioni in base a diversi privilegi di accesso

(chiamati scopes).

» wls-auth-client Un'applicazione PHP per 'autenticazione OAuth, che restituisce codici di autorizzazione e

nomi utente per gli utenti autenticati a un endpoint modificabile

» wls-backend-server Server di autenticazione OAuth e backend del sistema di vendita all'ingrosso in

TypeScript

Home

La home di wls-productsales-app non richiede autenticazione e permette a chi si collega di visualizzare i

prodotti in vendita

C ¢ @ localhost:8888

LJ Bl Prodotti
D Sku Nome Disponibilita
10 DREAM-BLUE-46IT Jeans DenimDream blue 46IT 7pz
9 DREAM-BLUE-44IT Jeans DenimDream blue 44T 100 pz
8 DREAM-BLACK-46IT Jeans DenimDream black 461T 50 pz
7 DREAM-BLACK-44IT Jeans DenimDream black 44IT 100 pz
6 URB-WHITE-L T-shirt UrbanChic white L 25pz
5 URB-WHITE-M T-shirt UrbanChic white M 50 pz
4 URB-WHITE-S T-shirt UrbanChic white S 100 pz
3 URB-RED-L T-shirt UrbanChic red L 25pz
2 URB-RED-M T-shirt UrbanChic red M 50 pz
1 URB-RED-S T-shirt UrbanChicred S 100 pz

Comunizazione con wils-backend-server

Di seguito & presente un esempio di comunicazione base tra wis-productsales-app e wls-backend-server. In
questo caso viene mostrato l'ottenimento dei prodotti da parte del frontend al backend:

»

localhost/it/soasec/progetto/presentazione

Prezzo

€45

€45

€29

€29

€35

€35

€35

Bk 06 g

Fornitore

DenimDream

DenimDream

DenimDream

DenimDream

UrbanChic

UrbanChic

UrbanChic

UrbanChic

UrbanChic

UrbanChic

1/16

http://localhost/it/soasec
http://localhost/it/soasec/progetto
http://localhost/it/soasec/progetto/presentazione
Giandonato Inverso

Presentazione | Wiki.js

->getProdotti()
1
(Exception $e) {
->failure(->getCode() . 5 ->getMessage())

» getProdotti() {

(Exception $e) {

[b))

Exception(

Per ogni tipo di endpoint (oauth, utenti, wholesaling), il flusso di esecuzione nel server di backend & strutturato

nelle seguenti sezioni:

1. routes
Definizione degli endpoint (get/post)

router. auth.jwtAccessTokenAuthMiddleware, controller.listVendite)
router. auth.simpleAuthMiddleware, controller.testKey)

router. auth.jwtAccessTokenAuthMiddleware, controller.newVendita)
router. auth.jwtAccessTokenAuthMiddleware, controller.getVendita)

router. auth.jwtAccessTokenAuthMiddleware

router. auth.jwtAccessTokenAuthMiddleware

router. auth.simpleAuthMiddleware, controller.listProdotti)
router. auth.jwtAccessTokenAuthMiddleware, controller.newProdotto)
router. auth.jwtAccessTokenAuthMiddleware, controller.getProdotto)
router. auth.jwtAccessTokenAuthMiddleware, controller.editProdotto)
router. auth.jwtAccessTokenAuthMiddleware, controller.deleteProdotto)

module. = router

localhost/it/soasec/progetto/presentazione

controller.getVenditeVenditore)
router. auth.jwtAccessTokenAuthMiddleware, controller.getVenditeCliente)
controller.getVenditeProdotto)
router. auth.jwtAccessTokenAuthMiddleware, controller.editVendita)

router. auth.jwtAccessTokenAuthMiddleware, controller.deleteVendita)

2/16

Giandonato Inverso

Presentazione | Wiki.js
2. middleware di autenticazione
In questa schermata & presente il middleware di autenticazione semplice che controlla le chiavi CLIENTID
e CLIENTSECRET

simpleAvthMiddleware(req: Reguest, res: Response, next:) {
clientId = req.header()
clientSecret = req.header(

guery = SqlString.format(
SELECT id, nome, data_registrazione, stato FROM client WHERE clientId AND clientSecret
[clientId, clientSecret]

db.db.query(query results:) {
(err) {

res.status(

(results.
res.status(

(!results[0].stato)
res.status() ¢

3. controller
Gestisce le richieste HTTP e le operazioni necessarie per soddisfare una richiesta tra cui verifiche di
sicurezza, e poi delega l'effettiva estrazione/modifica dei dati al provider. Infing, il controller restituisce una
risposta HTTP al client.

listProdotti(req: Request, res: Response, next: NextFunction) {

result = provider.listProdotti()
(result)
(err) {

next(err)

4. provider
Svolge un ruolo intermedio tra il controller e il datamodel. Se necessario segue controlli basati su token
(verifica dei permessi) per garantire che I'utente abbia i diritti necessari per effettuare la modifica. In base
ai permessi dell'utente, il provider pud chiamare funzioni specifiche del datamodel per eseguire I'effettiva

modifica dei dati.

listProdotti() {
datamodel.getProdotti()

localhost/it/soasec/progetto/presentazione 3/16

Giandonato Inverso

Presentazione | Wiki.js

5. datamodel

E' la parte piu bassa dell'architettura ed & responsabile dell'accesso diretto al database o ai dati sottostanti
e si preoccupa principalmente delle operazioni CRUD (Create, Read, Update, Delete) sul database.

getProdotti() {

Promise<any[1>((resolve, reject) {
query = SqlString.format(

SELECT FROM prodotti ORDER BY id DESC

[1

db.db.query(query (err: Error | results:) {
(err) {
reject(InternalServerError(err.

Iy

resolve(results)
B
B
I

Autenticazione con Oauth

L'autenticazione € obbligatoria per poter contattare gli endpoint che sono protetti da middleware che
richiedono un'autenticazione piu forte rispetto alla semplice autenticazione con CLIENTID e CLIENTSECRET.

In particolare, se I'utente vuole loggarsi, wis-productsales-app effettua un redirect a wis-auth-client

startOauthAuthentication() {
header(

. baseb4_encode(base_url()

wls-auth-client verifica le chiavi CLIENTID e CLIENTSECRET

etClientInfo() {
->

(Exception

L

localhost/it/soasec/progetto/presentazione

Giandonato Inverso

getClientInfo(clientId:
Promise(
query = SqlString.format(

SELECT id, nome, data_registrazione, stato FROM client WHERE clientId

[clientId, clientSecret]

(err: Error |

db.db.query(query
(err) {

reject(

(results.

reject(NotFound(

resolve(results)
b9
19

(resolve

InternalServerError(err.

Presentazione | Wiki.js

clientSecret:
reject) {

results:

))

AND clientSecret

) {

Se la verifica va a buon fine allora all'utente si apre la pagina dove & possibile inserire le credenziali

< C @ A Nonsicuro | wis-auth-client:8080/login.php

Vengono verificate le credenziali e viene creato un primo token JWT (userinfoToken) contenente i dati degli

utenti e i propri scopes

localhost/it/soasec/progetto/presentazione

Accedi con le tue credenziali

root@company.com

&

5/16

Giandonato Inverso

Presentazione | Wiki.js

getUserInfo(username: password:): Promise< > {
Promise< >((resolve, reject) => {

query = SqlString.format(
SELECT id, nome, cognome, username, FROM utenti WHERE username AND password =
[username, password]

db.db.query(gquery (err: Error | results:) o
(err) {

reject(InternalServerError(err.))

(results. === Q) {
reject(NotFound(

{
user = results[0]
scopes = oauthScopes.getScopesForType(user.

payload =

userInfo: user
scopes: scopes

expiresIn =

jwtUtils.getEncryptedToken(payload, expiresIn)
.then((token:) => {
resolve(token)
9]
.catch((error:) => {
reject(error)

)

Se le credenziali sono valide, I'utente vede la pagina di consenso dove puo scegliere se approvare o hegare
I'accesso ai propri dati

localhost/it/soasec/progetto/presentazione 6/16

Giandonato Inverso

Presentazione | Wiki.js

< C 0 A Nonsicuro | wis-auth-client:8080/consent.php L]

Consent page

Wholesales client vorrebbe accedere alle seguenti informazioni su di te:
 Dati anagrafici (nome, cognome, username)

 Scopes (privilegi)

Allow

Es. Accesso negato

< C O A Nonsicuro | 0.0.0.0:8888/index.php

-] Prodotti

X Oops! Autorizzazione non concessa

Es. Accesso approvato, I'userinfoToken viene scambiato per un authorizationCode, il quale viene restituito ad
un endpoint di callback di wis-productsales-app. LauthorizationCode & un altro token JWT che contiene id,
username dell'utente e gli scopes

localhost/it/soasec/progetto/presentazione 7/16

Giandonato Inverso

Presentazione | Wiki.js

1->getAuthorizationCode(
= baseé4_decode(
[i)

. baseé4_encode([
. baseé4_encode(

header(

(Exception) {
= ->getCode()
->getMessage ()

header(

([1) A

= baseb64_decode(

header(

getAuthorizationCode(userInfoToken:): Promise<
Promise< >((resolve, reject) => {

decryptedUserInfo = jwtUtils.getDecryptedToken(userInfoToken)
jwtUtils.checkTokenType(decryptedUserInfo)

payload =

: decryptedUserInfo.
: decryptedUserInfo.
: decryptedUserInfo.

expiresIn =

jwtUtils.getEncryptedToken(payload, expiresIn)
.then((token:) => {
resolve(token)
b
.catch((error:) => {
reject(error)
B
(error) {
reject(error)

wls-productsales-app lo inviera a wis-backend-server per scambiarlo con un primo access token ed un refresh
token.

localhost/it/soasec/progetto/presentazione

Giandonato Inverso

Presentazione | Wiki.js

wls-productsales-app usera gli access token come chiave API Bearer per tutte le chiamate agli endpoint di wls-
backend-server che lo richiedono ed usera il refresh token (se ancora valido) per ottenere nuovi access token.

Con il primo access token, wis-productsales-app chiedera a wis-backend-server alcuni dati che servono per
inizializzare I'applicativo di visualizzazione e gestione dei prodotti/vendite.

N.B. Il refresh token e I'expiration vengono salvati nei cookie del browser in modo da consentire un ripristino
della sessione qualora il refresh token fosse ancora valido. In qualsiasi altro caso, all'utente viene richiesto di
autenticarsi di nuovo.

session_start()

AuthManager ()
1) && ([IDDIR
1->exchangeAuthorizationCodeAccessToken(baseb4_decode(
1->setScopes([1 [

[1->getAccessToken(
]->setUser‘Data(base_ecoe [
——

IDDIR

1->failure(

localhost/it/soasec/progetto/presentazione 9/16

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Presentazione | Wiki.js

exchangeAuthorizationCodeAccessToken(clientId: authorizationCode:): Promise<{

Promise<{ g o o F>((resolve, reject)

decryptedAuthorizationCode = jwtUtils.getDecryptedToken(authorizationCode)
jwtUtils.checkTokenType(decryptedAuthorizationCode)

accessTokenPayload = {

: decryptedAuthorizationCode.
: decryptedAuthorizationCode.
: decryptedAuthorizationCode.

refreshTokenPayload =

: decryptedAuthorizationCode.
: decryptedAuthorizationCode.
: decryptedAuthorizationCode.

accessTokenExpiresIn =
refreshTokenExpiresIn =

createAccessTokenPromise = jwtUtils.getEncryptedToken(accessTokenPayload, accessTokenExpiresIn)
createRefreshTokenPromise = jwtUtils.getEncryptedToken(refreshTokenPayload, refreshTokenExpiresIn)

refreshTokenExpiration = format(addHours(O

.ali([createAccessTokenPromise, createRefreshTokenPromisel)

.then(([accessToken refreshToken 1) => {

jwtUtils.addUniqueAccessToken(clientId, accessToken)

resolve({accessToken, refreshToken, refreshTokenExpiration})
b
.catch((error:) = {

reject(error)
1)

getUserScopes(accessToken:): Promise< [1> {

Promisex< [1>C (resolve, reject) => {
decryptedAccessToken jwtUtils.getDecryptedToken(accessToken)
userScopes: [] decryptedAccessToken.

resolve(userScopes)

(error) {
reject(error)

localhost/it/soasec/progetto/presentazione

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Presentazione | Wiki.js

getAccessToken() {
[]

== && ! ->checkRefreshToken())
->startUserAuthentication()

=)

->getRefreshToken()

)

Exception(

—>exchangeRefPeshTokenAccessToken(

->setRefreshToken(10 10

10
(Exception
->failure(->getCode() . . ->getMessage ()

exchangeRefreshTokenAccessToken(clientId: refreshToken:): Promise<{
Promise<{ 0 o o >((resolve, reject)

decryptedRefreshToken = jwtUtils.getDecryptedToken(refreshToken)
jwtUtils.checkTokenType(decryptedRefreshToken)

accessTokenPayload =
: decryptedRefreshToken.

: decryptedRefreshToken.
: decryptedRefreshToken.

refreshTokenPayload = {

: decryptedRefreshToken.
: decryptedRefreshToken.
: decryptedRefreshToken.

accessTokenExpiresIn =
refreshTokenExpiresIn =

createAccessTokenPromise = jwtUtils.getEncryptedToken(accessTokenPayload, accessTokenExpiresIn)
createRefreshTokenPromise = jwtUtils.getEncryptedToken(refreshTokenPayload, refreshTokenExpiresIn)

refreshTokenExpiration = format(addHours(O
.al([createAccessTokenPromise, createRefreshTokenPromisel)

.then(([accessToken refreshToken 1D = {
jwtUtils.addUniqueAccessToken(clientId, accessToken)
resolve({accessToken, refreshToken, refreshTokenExpiration})
b
.catch((error:) => {
reject(error)

localhost/it/soasec/progetto/presentazione

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Giandonato Inverso

Presentazione | Wiki.js

setUserData(
.|

- ->getUtente(
serialize(array_values([1))
= strtotime()

setcookie(
(Exception $e) {
->failure(->getCode() . . ->getMessage()

In questo caso l'utente root (privilegio di livello 0) ha accesso a tutte le funzionalita (CRUD su prodotti, CRUD
su vendite)

<« C O A Nonsicuro | 0.0.0.0:8888/index.php h * O 6 /I’B » 0O

@ (R

ID:1

] Sku Nome Disponibilita Prezzo Fornitore Operazioni
™ Prodotti

10 DREAM-BLUE-461T Jeans DenimDream blue 461T Tpz €45 DenimDream o
e : B2
9 DREAM-BLUE-44IT Jeans DenimDream blue 44T 100 pz €45 DenimDream B .

8 DREAM-BLACK-46IT Jeans DenimDream black 461T 50 pz €50 DenimDream B.
7 DREAM-BLACK-441T Jeans DenimDream black 44T 100 pz €50 DenimDream u.
6 URB-WHITE-L T-shirt UrbanChic white L 25pz €29 UrbanChic B.
5 URB-WHITE-M T-shirt UrbanChic white M 50 pz €29 UrbanChic B.
4 URB-WHITE-S T-shirt UrbanChic white S 100 pz €29 UrbanChic u.
3 URB-RED-L T-shirt UrbanChic red L 25pz €35 UrbanChic B.
2 URB-RED-M T-shirt UrbanChic red M 50 pz €35 UrbanChic B.
1 URB-RED-S T-shirt UrbanChic red S 100 pz €35 UrbanChic B.

Crittografia dei token

Tutti i token JWT sono firmati con la chiave privata e hanno il payload crittografato con la chiave pubblica al
fine di ottienere autenticita, integrita e riservatezza dei dati:

» Autenticita: Utilizzando la chiave privata per firmare il token JWT, si fornisce una prova che il token & stato
emesso da una fonte attendibile. Poiché chiunque riceva il token puo verificare che sia autentico.

» Integrita: La firma digitale creata con la chiave privata garantisce che il contenuto del token non sia stato
modificato durante la sua trasmissione e quando il destinatario verifica la firma del token con la chiave
pubblica corrispondente, puo essere sicuro che il token non sia stato alterato da terze parti durante il
trasporto.

» Riservatezza: La crittografia con la chiave pubblica assicura che solo chi possiede la chiave privata
corrispondente sara in grado di decifrare il contenuto del payload. Pertanto, i dati nel payload rimarranno
confidenziali per chiunque non abbia accesso alla chiave privata (ce I'ha solo il server).

1 getEncryptedToken(
2 payloadInput: ,

localhost/it/soasec/progetto/presentazione

12/16

Giandonato Inverso

Giandonato Inverso

o NOoO oW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
46
47
48
49
50
51

Presentazione | Wiki.js

expiresIn: ,
options?:): < > {

< >((resolve, reject) => {
fs = ("fs");

// tslint:disable-next-1line:no-shadowed-variable
crypto = ("crypto");
encryptionOptions = {
key: fs.readFileSync(
filepath.join(__dirname, "key", "public-key.pem"), "utf8"),
format: "pem",
padding: crypto.constants. ,

|3

encryptedPayload = crypto.publicEncrypt(
encryptionOptions, Buffer. (.stringify(payloadInput)));
base64EncryptedPayload = encryptedPayload.toString("base64");

payload = {
data: base64EncryptedPayload,
}

Jwtoptions: jwt.SignOptions = {
algorithm: "RS256",
expiresIn,

|3

(options) {
Object.assign(Jwtoptions, options);

privateKeyPEM = fs.readFileSync(
filepath.join(__dirname, "key", "private-key.pem"), "utf8");
privateKey = crypto.createPrivateKey({
key: privateKeyPEM,

format: "pem",
passphrase: process.env. ,

1)

jwt.sign(payload, privateKey, Jwtoptions, (err, token) => {

(err) {

reject(err);

} {

resolve(token || "");

localhost/it/soasec/progetto/presentazione

13/16

Giandonato Inverso

Presentazione | Wiki.js

1 getDecryptedToken(inputToken:):

2 < > {

3 ((resolve, reject) => {

4 // tslint:disable-next-line:no-shadowed-variable

5 crypto = ("crypto");

6 privateKeyPath = filepath.join(__dirname, "key", "private-key.pe
7 publicKeyPath = filepath.join(__dirname, "key", "public-key.pem"
8

9 fs = ("fs");

10 privateKeyPEM = fs.readFileSync(privateKeyPath, "utf8");
11

12 {

13 publicKey = fs.readFileSync(publicKeyPath, "utf8");
14 verifiedToken: = jwt.verify(

15 inputToken, publicKey, { algorithms: ["RS256"] });

16

17 base64EncryptedPayload = verifiedToken.data;

18

19 encryptionOptions = {

20 key: privateKeyPEM,

21 format: "pem",

22 passphrase: process.env. ,

23 padding: crypto.constants. ,

24 ¥

25

26 decryptedPayloadBuffer = crypto.privateDecrypt(

27 encryptionOptions, Buffer. (baseb4EncryptedPayload, "base64")
28 decryptedPayload = .parse(

29 decryptedPayloadBuffer.toString("utf8"));

30

31 resolve(decryptedPayload) ;

32 } (err) {

33 reject(err);

34 }

35 1)

36 | }

Access token monouso

Ogni access token generato ha una durata fissata di 1 minuto, tempo sufficiente per la generazione e la
richiesta ad un endpoint che richiede tale token per l'autenticazione (potrebbe essere anche un tempo molto
piu basso).

Inoltre & stata implementata una protezione in piu per rendere gli access token monouso al fine di evitare i
replay attack.

In particolare all'avvio del software viene inizializzata una mappa che conterra gli access token generati e che
una volta ricevuti dal server stesso saranno da essa rimossi.

localhost/it/soasec/progetto/presentazione 14/16

Giandonato Inverso

Presentazione | Wiki.js

uniqueAccessTokenMap: Record<

addUniqueAccessToken(clientId:
(!uniqueAccessTokenMap[clientId]) {
uniqueAccessTokenMap[clientId] = []

}
uniqueAccessTokenMap[clientId].push(token)

removeTokenFromUniqueTokenMap(clientId:
tokens = uniqueAccessTokenMap[clientId]

(tokens) {
tokenIndex = tokens.indexO0f(token)
(tokenIndex !== -1) {
tokens.splice(tokenIndex

{

InternalServerError(

NotFound(

checkTokenExpiration(token:

)
)

{
currentTime = .floor(Date.now() /
(token. < currentTime) A{

InternalServerError(

.all([createAccessTokenPromise, createRefreshTokenPromise])
.then(([accessToken refreshToken 1) => {
jwtUtils.addUniqueAccessToken(clientId, accessToken)
resolve({accessToken, refreshToken, refreshTokenExpiration})
3]
.catch((error:) => {
reject(error)

D)

Per evitare che un client generi troppi token e che rimangano inutilizzati, la mappa viene automaticamente
svuotati dopo un determinato periodo di tempo

localhost/it/soasec/progetto/presentazione

Giandonato Inverso

Presentazione | Wiki.js

clearUniqueAccessTokens() {

clientId uniqueAccessTokenMap) {
uniqueAccessTokenMap[clientId]

startTokenCleanupInterval() {

setInterval(clearUniqueAccessTokens

Basato su Wiki.js

localhost/it/soasec/progetto/presentazione 16/16

https://wiki.js.org/
Giandonato Inverso

